
Computational Algorithms and Numerical Dimensions
www.journal-cand.com

Com. Alg. Num. Dim Vol. 2, No. 4 (2023) 221–233.

Paper Type: Original Article

Characterizations of Physico-Chemical Properties for Non-kekulean
benzenoid hydrocarbon Using M-polynomial

Anns Uzair 1 , Aiman Ishtiaq 1, Shanzay Noor Khan 1, Sawaira Saeed 1, Sajid Iqbal
1, Saara Fatima 1, Ajwa Faisal 1, Baqir Hussain 1, Afreen Zahra 1, Misbah Rasheed 1,
Aamir Hussain Khan 1, Zeeshan Anwar 1, Muhammad Rashid 1, Maira Hafeez 1, Saba
Mehmood 1∗, Zainab Iqbal 2 and Muhammad Kamran 1∗

1Department of Mathematics, Thal University Bhakkar, 30000, Punjab, Pakistan; kamrankfueit@gmail.com; 2Department of Mathematics,
National College of Business Administration Economics, Multan.

Citation:

Received: 27 February 2023
Revised: 05 May 2023
Accepted: 20/12/2023

Uzair et. al. (2023). Characterizations of Physico-Chemical Properties
for Non-kekulean benzenoid hydrocarbon Using M-polynomial.
Computational Algorithms and Numerical Dimensions,2(4), 221-233.

Abstract

In the last few decades, nanomaterials have found widespread application in a variety of industries, including
electronics, building, food processing, pharmaceuticals, cosmetics, and aviation. These nanoparticles could
enhance medical therapy, diagnostics, and preventive methods. These days, drug delivery and cellular
imaging are two applications of benzonoid systems in biotechnology and medicine. Non-kekulean benzoid
hydrocarbons offer a great way to evaluate the structural characteristics of their series due to their regular
structures. This work involves the computation of several degree-based topological indices that are helpful
in figuring out how reactive the associated molecules are. In particular, we found these calculations to be
helpful in examining the thermodynamic parameter entropy, which could be important for successfully
reworking the structure of non-kekulean benzoid hydrocarbons.
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1|Introduction
Graph theory is the branch of mathematics deal with the study of graph, which are mathematical structures
used to model pairwise relations between objects. The study of graph theory officially began in 1735 [1]. Graph
theory is frequently used to investigate networks, models, and circuits. Schedules and routes might be as
diverse as vast collection and linen delivery. The fields of computing, biology, chemistry, physics, electrical,
civil engineering, communication science, operations research, architecture, genetics, sociology, psychology,
anthropology, linguistics, and economics have all found major applications for this theory. It is known as
"mathematical chemistry" since it is mostly employed in applied chemistry. Vertex and edges are the basic
building blocks of graph theory. Vertex V is simply defined as a figure’s node and edge E is the connection
between two vertices. In graph theory, the terms "QSAR" and "QSPR" refer to a compound’s structure or
formula [2, 3]. Since Corwin’s initial work, quantitatives structure-activity and structure-property relationships
(QSAR/QSPR) have been established and applied, as is currently known.
The melting and boiling points in homologous series predicted by Mills is probably the first QSPR to come to
mind. The ability of QSAR or QSPR to predict the endpoint values of compounds that were not used to build
correlations i.e., chemicals that were not utilized in the learning process, is what gives these techniques their
predictive strength. The two primary methods for assessing predictability are internal cross validation and
external validation using a set of test compounds. For scientific and legal reasons, only QSARs and QSPRs that
have undergone external validation can now be deemed valid. To determine a compound’s structure, we used
the TIs [4, 5, 6, 7].
A topological index (or molecular structure descriptor) is a numerical number connected to chemical composition
for correlating chemical structure with various physical attributes, chemical reactivity, or biological activity,
according to the IUPAC definition. While examining the boiling points of alkanes, Wiener developed the concept
of the topological index. Numerous such “structure descriptors" have been proposed thus far and continue to be
so often without any consideration of whether they correspond with any of the "various physical properties,
chemical reactivity, or biological activity. The molecular graph based structure descriptors are particularly
abundant [8, 9, 10]. Development of concepts for the subject of graph theory called molecular topology (MT ).
Many physico-chemical and biological parameters can be accurately and quickly estimated using (MT ), which
has been shown to be a reliable method. (MT ) principles, which include converting a chemical molecule into a
molecular network with atoms as nodes and connections as links, are used to measure topological index [11, 12].
Assume that the molecular graph G = (V, E) has E (G) as the line set (G) and V (G) as the node set. The
nodes and edges in a graph G are denoted by the symbols |V (G)| and |E(G)|, respectively. d(u), which is the
degree of node u(V ), represents the number of nodes that are adjacent to it. The line between the vertex pairs u
and v is designated as e = uv, where e ∈ E(G) [13, 14].
For instance, there are three types of topological indices; degree-based, distance-based, and counting-based.
Theoretical chemistry and biochemistry are two fields where degree-based topological indices are extremely
helpful [15]. A key factor in examining the physico chemical characteristics of compound structures is topological
index. Topological indices come in five different varieties: degree, distance, eigenvalues, matching, and mixing.
For measurement, numerous graph polynomials have been created information on the molecular graph’s structure
[17].
Visual polynomial discovered applications for molecules in chemistrys Unsaturated compound orbitals and
significant concepts where to get the structural descriptors that are utilised to create structural attributes
model. Different topological indices exist, but we utilised polynomial. A graph’s algebraic counterparts are
called graph polynomials. Generally speaking this is invariant, at least for graph isomorphisms. Algebraic graph
polynomials in abundance have already been introduced, some of which are significant; Polynomials such as
Hosoya polynomials, Tutte polynomials, M-Polynomials, Schultz polynomials, modified Schultz polynomials, and
matching polynomials. This polynomial is recognised as being the most typical polynomial connected to deci-
sions. Therefore, the computation of the distance-based topological index is a single polynomial computation [18].

• Mathematical chemistry is helpful to study the quantitative models for helping comprehend the world of
chemistry by understanding the elements that make up molecules.

• In this study, the application of chemical graph theory is used to determine the chemical structure and
chemical properties of Non-kekulean benzenoid hydrocarbon using M-polynomial
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• Mathematical chemistry is helpful for the study of chemical structure and chemical properties of
molecules.

• Mathematical chemistry is helpful for taking measurements performing dimensional analysis determining
temperature and density.

2.2|Literature Review
There’re many different polynomials including Hosoya polynomial, forgotten polynomial and Zagreb polynomial
but they give only 1 or 2 topological indices [19, 20, 21]. The M-polynomial is latest polynomial and can give
more than ten degree based molecular descriptors[22, 23]. In this section, we will study about M-polynomial
existing in literature.

Topological indices. In this section we will study about the topological indices that we used in this work.
The M-polynomial of a graph G is formulated as [24] for further study see [25, 26]

M(G; y, z) =
∑

δ≤i≤j≤△

mijyizj (1)

Here δ = min{d(s)/s ∈ V (G)}, △ = max{d(s)/s ∈ V (G)} and mij(G) is the edge rs ∈ E(G) s.t.
{d(r), d(s)} = {i, j}.
The topological index introduced by Wiener in 1947 [27] was first and named path numbers, now called as the
Wiener index [28]. Later in 1975, Milan Randić found Randić indexas

R− 1
2
(G) =

∑
rs∈E(G)

1√
drds

(2)

General Randić index introduced in [29] and in [30]. The general Randić and inverse Randić indices are
formulated as

Rα(G) =
∑

rs∈E(G)

(drds)αRRα(G) =
∑

rs∈E(G)

1
(drds)α

(3)

The first and second Zagreb indices were introduced by Gutman and Trinajstić [31] and defined as

M1(G) =
∑

rs∈E(G)

(dr + ds)M2(G) =
∑

rs∈E(G)

(drds) (4)

Gutman and Furtula [32] developed forgotten topological index and described as:

F (G) =
∑

rs∈E(G)

[d(r)2 + d(s)2] (5)

The second modified Zagreb index defined as

mM2(G) =
∑

rs∈E(G)

1
drds

(6)

Ranjini, lokesha and Usha [33] redefined third Zagreb index which was described as:

ReZG3(G) =
∑

rs∈E(G)

dr · ds(dr + ds) (7)

The symmetric division deg index introduced [34] used for surface determination of polychlorobiphenyls [35] and
formulated as

SDD(G) =
∑

rs∈E(G)

(
min(dr, ds)
max(dr, ds) + max(dr, ds)

min(dr, ds)

)
(8)

The other version of the Randić index is the Hormonic index [36] and formulated as

H(G) =
∑

rs∈E(G)

2
dr + ds

(9)



224 Anns Uzair et al., and | Com. Alg. Num. Dim. 2(4) (2023) 221-233

Inverse sum index is
I(G) =

∑
rs∈E(G)

drds

dr + ds
(10)

The augmented Zagreb index is formulated as [38]

A(G) =
∑

rs∈E(G)

(
drds

dr + ds − 2

)3
(11)

Estrada et al. [39] introduced Atom-bond connectivity index. Vukičević [40] proposed Geometric Arithmetic
index.

GA(G) =
∑

rs∈E(G)

2
√

drds

(dr + ds)

The first and second K-Banhatti indices were introduced by Kulli in [41] as

B1(G) =
∑
ue

du + de

B2(G) =
∑
ue

du × de

where ue means that the vertex u and edge e are incidents in G
The modified first and second K-Banhatti indices are defined as [42]

mB1(G) =
∑
ue

1
du + de

mB2(G) =
∑
ue

1
du × de

The first and second hyper K-Banhatti indices are defined by Kulli in [43] as

HB1(G) =
∑
ue

[du + de]2

HB2(G) =
∑
ue

[du × de]2

The harmonic K-Banhatti index is calculated as [44]

Hb(G) =
∑
ue

2
du + de

Methods and proofs

Derivation of some topolgical indices from M.Polynomial where

DaM(a, b) = a
∂

∂a
M(a, b),

DbM(a, b) = b
∂

∂b
M(a, b),

SaM(a, b) =
∫

M(a, b)
a

da,

SbM(a, b) =
∫

M(a, b)
b

db,

JM(a, b) = f (a, a) ,
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Q−2M(a, b) = a−2M(a, b),

LaM(a, b) = f(a2, b),

LbM(a, b) = f(a, b2),

D1/2
a M(a, b) =

√
a

∂M(a, b)
∂a

√
M(a, b),

D
1/2
b M(a, b) =

√
b
∂M(a, b)

∂b

√
M(a, b),

S1/2
a M(a, b) =

√∫
M(a, b)

a
da

√
M(a, b),

S
1/2
b M(a, b) =

√∫
M(a, b)

b
db

√
M(a, b),

The Table 1 is constructed using the Figure 1 for Gn; n ≥ 1.

Figure 1. Non-kekulean benzenoid hydrocarbon

Table 1: Non-kekulean benzenoid hydrocarbon using Figure 1
Types of edges (2, 2) (2, 3) (3, 3)
Count of edges 8 12 + 4n 13n − 6

Derivation of M-Polynomial. Using Table 1, we can compute the M-Polynomial of non-kekulean benzenoid
hydrocarbon, simple and undirected graph Gn; n ≥ 1 as follows:

MP (NKB; ξ, η) =
∑
i⩽j

mpij(NKB)ξiηj

=
∑
2⩽2

mp22(NKB)ξ2η2 +
∑
2⩽3

mp23(NKB)ξ2η3 +
∑
3⩽3

mp33(NKB)ξ3η3

= |E(2,2)|ξ2η2 + |E(2,3)|ξ2η3 + |E(3,3)|ξ3η3

= (8)ξ2η2 + (12 + 4n)ξ2η3 + (13n − 6)ξ3η3

Consider the non-kekulean benzenoid hydrocarbon Gn; n ≥ 1 structure.
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1.: First Zagreb Index
M1(NKB) = (Dξ + Dη) (MP (NKB; ξ, η)) |ξ=η=1

= 89n + 56

2.: Second Zagreb Index
M2(NKB) = (DξDη) (MP (NKB; ξ, η)) |ξ=η=1

= 141n + 50

3.: First K- Banhatti Index
B1(NKB) = (Dξ + Dη + 2DξQ−2J) (MP (NKB; ξ, η)) |ξ=1

= 226n + 112

4.: Modified first K- Banhatti Index
mB1(NKB) = SξQ−2J (MP (NKB; ξ, η)) |ξ=1

= 5.93n + 6.8

5.: Symmetric Index
SSD(NKB) = (DξSη + SξDη) (MP (NKB; ξ, η)) |ξ=η=1

= 30.6n + 30

6.: Harmonic Index
H (NKB) = 2SξJ (MP (NKB; ξ, η)) |ξ=1

= 89n + 102
15

7.: Inverse Index
I (NKB) = SξJDξDη (MP (NKB; ξ, η)) |ξ=1

= 24.3n + 13.4

8.: Atom- bond connectivity Index

ABC (NKB) = D
1/2
ξ Q−2JS

1/2
ξ S1/2

η (M(NKB; ξ, η)) |ξ=1

= 11.49n + 10.14

9.: Geometric - Arithmetic Index
GA (NKB) = 2SξJD

1/2
ξ D1/2

η (MP (NKB; ξ, η)) |ξ=1

= 16.91n + 13.75

10.: K-Harmoni Banhatti index
Hb (NKB) = 2SξQ−2J(Lξ + Lη)(MP (NKB; ξ, η))|ξ=1 = 11.86n + 13.6

11.: Randic index

Rα (NKB) = Dα
ξ Dα

η (MP (NKB; ξ, η))

=
{

n(2α+2 × 3α + 32α × 13) + 22α+3

+2α+2 × 3α+1 − 32α+1 × 2

}
Proof: Let

MP (NKB; ξ, η) = (8)ξ2η2 + (12 + 4n)ξ2η3 + (13n − 6)ξ3η3
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Now, we apply the formulas and compute the following required results.

1.: Dξ (MP (NKB; ξ, η)) = 2(8)ξ, ηµ2νξ, η2 + 2(12 + 4n)ξ2η3 + 3(13n − 6)ξ3η3;

2.: Dη (MP (NKB; ξ, η)) = 2(8)ξ2η2 + 3(12 + 4n)ξ2η3 + 3(13n − 6)ξ3η3;

3.: DξDη (MP (NKB; ξ, η)) = 4(8)ξ2η2 + 6(12 + 4n)ξ2η3 + 9(13n − 6)ξ3η3;

4.: SξDη (MP (NKB; ξ, η)) = 2
2 (8)ξ2η2 + 3

2 (12 + 4n)ξ, η3 + 3
3 (13n − 6)ξ3, η3;

5.: Sη (MP (NKB; ξ, η)) = 1
2 (8)ξ2η2 + 1

3 (12 + 4n)ξ2η3 + 1
3 (13n − 6)ξ3η3;

6.: DξSη (MP (NKB; ξ, η)) = 2
2 (8)ξ2η2 + 2

3 (12 + 4n)ξ2η3 + 3
3 (13n − 6)ξ3η3;

7.: J (MP (NKB; ξ, η)) = (8)ξ4 + (12 + 4n)ξ5 + (13n − 6)ξ6;

8.: SξJ (MP (NKB; ξ, η)) = 1
4 (8)ξ4 + 1

5 (12 + 4n)ξ5 + 1
6 (13n − 6)ξ6;

9.: SξJDξDη (MP (NKB; ξ, η)) = 1
4 4(8)ξ4 + 1

5 6(12 + 4n)ξ5 + 1
6 9(13n − 6)ξ6;

10.: Dα
ξ Dα

η (MP (NKB; ξ, η)) = 22α(8)ξ2η2 + 2α.3α(12 + 4n)ξ2η3 + 32α(13n − 6)ξ3η3;

11.: S
1/2
η (MP (NKB; ξ, η)) = 1√

2 (8)ξ2η2 + 1√
3 (12 + 4n)ξ2η3 + 1√

3 (13n − 6)ξ3η3;

12.: S
1/2
ξ S

1/2
η (MP (NKB; ξ, η)) = 1√

2
√

2 (8)ξ2η2 + 1√
6 (12 + 4n)ξ2η3 + 1√

9 (13n − 6)ξ3η3;

13.: JS
1/2
ξ S

1/2
η (MP (NKB; ξ, η)) = 1√

2
√

2 (8)ξ4 + 1√
6 (12 + 4n)ξ5 + 1√

9 (13n − 6)ξ6;

14.: Q−2JS
1/2
ξ S

1/2
η (MP (NKB; ξ, η)) = 1√

2
√

2 (8)ξ2 + 1√
6 (12 + 4n)ξ3 + 1√

9 (13n − 6)ξ4;

20: D
1/2
ξ Q−2JS

1/2
ξ S

1/2
η (MP (NKB; ξ, η)) = 4

√
2ξ2 +

√
3√
6 (12 + 4n)ξ3 +

√
4√
9 (13n − 6)ξ4;

21.: D
1/2
η (MP (NKB; ξ, η)) =

√
2(8)ξ2η2 +

√
3(12 + 4n)ξ2η3 +

√
3(13n − 6)ξ3η3;

22.: D
1/2
ξ D

1/2
η (MP (NKB; ξ, η)) = 2(8)ξ2η2 +

√
6(12 + 4n)ξ2η3 + 3(13n − 6)ξ3η3;

23.: JD
1/2
ξ D

1/2
η (MP (NKB; ξ, η)) = 2(8)ξ4 +

√
6(12 + 4n)ξ5 + 3(13n − 6)ξ6;

24.: SξJD
1/2
ξ D

1/2
η (MP (NKB; ξ, η)) = 4ξ4 +

√
6

5 (12 + 4n)ξ5 + 3
6 (13n − 6)ξ6;

25.: Q−2J (MP (NKB; ξ, η)) = (8)ξ2 + (12 + 4n)ξ3 + (13n − 6)ξ4;

26.: DξQ−2J (M(NKB; ξ, η)) = 2(8)ξ2 + 3(12 + 4n)ξ3 + 4(13n − 6)ξ4;

27.: Lξ (MP (NKB; ξ, η)) = (8)ξ4η2 + (12 + 4n)ξ4η3 + (13n − 6)ξ5η3;

28.: Lη(MP (NKB; ξ, η)) = (8)ξ2η4 + (12 + 4n)ξ2η5 + (13n − 6)ξ3η5;

29: (Lξ + Lη) (MP (NKB; ξ, η)) =
(

(8)ξ4η2 + (12 + 4n)ξ4η3 + (13n − 6)ξ5η3+
(8)ξ2η4 + (12 + 4n)ξ2η5 + (13n − 6)ξ3η5

)
;

30.: J(Lξ + Lη) (MP (NKB; ξ, η)) =
(

(8)ξ6 + (12 + 4n)ξ7 + (13n − 6)ξ8+
(8)ξ6 + (12 + 4n)ξ7 + (13n − 6)ξ8

)
;

31.: Q−2J(Lξ + Lη) (MP (NKBV ; ξ, η)) =
(

(8)ξ4 + (12 + 4n)ξ5 + (13n − 6)ξ6 + (8)ξ4

+(12 + 4n)ξ5 + (13n − 6)ξ6

)
;

32.: SξQ−2J(Lξ + Lη) (MP (NKB; ξ, η)) =
(

2ξ4 + 1
5 (12 + 4n)ξ5 + 1

6 (13n − 6)ξ6 + 2ξ4+
1
5 (12 + 4n)ξ5 + 1

6 (13n − 6)ξ6

)
.

Now we apply the above results on the topological indices.

1.: First Zagreb Index
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For Gn; n ≥ 1, First Zagreb index is as follows:

M1(NKB) = (Dξ + Dη) (MP (NKB; ξ, η)) |ξ=η=1

=
{

2(8)ξ2η2 + 2(12 + 4n)ξ2η3 + 3(13n − 6)ξ3η3

+2(8)ξ2η2 + 3(12 + 4n)ξ2η3 + 3(13n − 6)ξ3η3

}
=

{
2(8) + 2(12 + 4n) + 3(13n − 6) + 2(8)

+3(12 + 4n) + 3(13n − 6)

}
=

{
16 + 24 + 8n + 39n − 18 + 16

+36 + 12n + 39n − 18

}
= 89n + 56

2.: Second Zagreb Index

For Gn; n ≥ 1, Second Zagreb index is as follows:

M2(NKB) = (DξDη) (MP (NKB; ξ, η)) |ξ=η=1

= 4(8)ξ2η2 + 6(12 + 4n)ξ2η3 + 9(13n − 6)ξ3η3

= 4(8) + 6(12 + 4n) + 9(13n − 6)
x = 32 + 72 + 12n + 117n − 54

= 141n + 50

3.: First K- Banhatti Index

For Gn; n ≥ 1, First K- Banhatti index is as follows:

B1(NKB) = (Dξ + Dη + 2DξQ−2J) (MP (NKB; η, ξ)) |ξ=1

=

 2(8)ξ2η2 + 2(12 + 4n)ξ2η3 + 3(13n − 6)ξ3η3

+2(8)ξ2η2 + 3(12 + 4n)ξ2η3 + 3(13n − 6)ξ3η3

+2
(
2(8)ξ2 + 3(12 + 4n)ξ3 + 4(13n − 6)ξ4)


=

(
2(8) + 2(12 + 4n) + 3(13n − 6) + 2(8) + 3(12 + 4n)
+3(13n − 6) + 2 (2(8) + 3(12 + 4n) + 4(13n − 6))

)
=

(
= 16 + 24 + 8n + 39n − 18 + 16 + 36 + 12n

+39n − 18 + 32 + 72 + 24n + 104n − 48

)
= 226n + 112

4.: Modified first K- Banhatti Index

For Gn; n ≥ 1, Modified first K- Banhatti index is as follows:

mB1(NKB) = SξQ−2J (MP (NKB; ξ, η)) |ξ=1

=
{

2ξ4 + 1
5 (12 + 4n)ξ5 + 1

6 (13n − 6)ξ6 + 2ξ4

+ 1
5 (12 + 4n)ξ5 + 1

6 (13n − 6)ξ6

}
=

{
2 + 1

5 (12 + 4n) + 1
6 (13n − 6) + 2

+ 1
5 (12 + 4n) + 1

6 (13n − 6)

}
=

{
2 + 1

5 12 + 1
5 4n + 1

6 13n − 1 + 2
+ 1

5 12 + 1
5 4n + 1

6 13n − 1

}
= 5.93n + 6.8

5.: Symmetric Index

For Gn; n ≥ 1, Symmetric index is as follows:

SSD(NKB) = (DξSη + SξDη) (MP (NKB; ξ, η)) |ξ=η=1
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=
{ 2

2 (8)ξ2η2 + 2
3 (12 + 4n)ξ2η3 + 3

3 (13n − 6)ξ3η3

+ 2
2 (8)ξ2η2 + 3

2 (12 + 4n)ξ2η3 + 3
3 (13n − 6)ξ3η3

}
=

{
8 + 2

3 (12 + 4n) + (13n − 6) + 8
+ 3

2 (12 + 4n) + (13n − 6)

}
=

{
8 + 2

3 (12) + 2
3 (4n) + 13n − 6 + 8

+ 3
2 (12) + 3

2 (4n) + 13n − 6

}
= 30.6n + 30

6.: Harmonic Index

For Gn; n ≥ 1, Harmonic index is as follows:
H (NKB) = 2SξJ (MP (NKB; a, η)) |a=1

= 2
(

1
4(8)ξ4 + 1

5(12 + 4n)ξ5 + 1
6(13n − 6)ξ6

)
= 4 + 2

5(12) + 2
54n + 1

3(13n) − 2

= 89n + 102
15

7.: Inverse Index

For Gn; n ≥ 1, Inverse index is as follows:
I (NKB) = SξJDξDη (MP (NKB; ξ, η)) |ξ=1

= 1
44(8)ξ4 + 1

56(12 + 4n)ξ5 + 1
69(13n − 6)ξ6

= (8) + 6
5(12) + 6

5(4n) + 3
2(13n) − 9

= 24.3n + 13.4

8.: Atom- bond connectivity Index

For Gn; n ≥ 1, Atom- bond connectivity index is as follows:

ABC (NKB) = D
1/2
ξ Q−2JS

1/2
ξ S1/2

η (MP (NKB; ξ, η)) |ξ=1

= 4
√

2ξ2 +
√

3√
6

(12 + 4n)ξ3 +
√

4√
9

(13n − 6)ξ4

= 4
√

2 +
√

3√
6

(12) +
√

3√
6

(4n) + 2
3(13n) − 2

3(6)

= 4
√

2 +
√

3√
6

(12) +
√

3√
6

(4n) + 2
3(13n) − 4

= 11.49n + 10.14

9.: Geometric - Arithmetic Index

For Gn; n ≥ 1, Geometric - Arithmetic index is as follows:

GA (NKB) = 2SξJD
1/2
ξ D1/2

η (MP (NKB; ξ, η)) |ξ=1

= 2
(

4ξ4 +
√

6
5 (12 + 4n)ξ5 + 3

6(13n − 6)ξ6
)

= 8 +
√

6
5 (24) +

√
6

5 (8n) + (13n) − (6)
= 16.91n + 13.75
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10.: K-Harmonic Banhatti Index

For Gn; n ≥ 1, K-Harmonic Banhatti index is as follows:

Hb (NKB) = 2SξQ−2J(Lξ + Lη)(MP (NKB; ξ, η))|ξ=1

=
{

2
(

2ξ4 + 1
5 (12 + 4n)ξ5 + 1

6 (13n − 6)ξ6 + 2ξ4

+ 1
5 (12 + 4n)ξ5 + 1

6 (13n − 6)ξ6

)}
=

{
4 + 24

5 + 8
5 n + 1

3 (13n) − 2 + 4
+ 24

5 + 8
5 n + 1

3 (13n) − 2

}
= 11.86n + 13.6

11.: Randic Index

For Gn; n ≥ 1, Randic index is as follows:

Rα (NKB) = Dα
ξ Dα

η (MP (NKB; ξ, η))

=
{

22α(8)ξ2η2 + 2α × 3α(12 + 4n)ξ2η3

+32α(13n − 6)ξ3η3

}
=

{
22α × 23 + 2α × 3α × 22 × 3 + 22n

+32α(13n) − 32α × 2 × 3

}
=

{
22α+3 + 2α+2 × 3α+1 + 2α+2. × 3αn

+32α(13n) − 32α+1 × 2

}
=

{
n(2α+2 × 3α + 32α × 13) + 22α+3

+2α+2 × 3α+1 − 32α+1 × 2

}
Here are some cases for Randic Index with different values of α. Special Cases:

Case 1::

For α = 1

Rα (NKB) =
{

n(2α+2 × 3α + 32α × 13) + 22α+3

+2α+2 × 3α+1 − 32α+1 × 2

}
R1 (NKB) =

{
n(21+2 × 31 + 32 × 13) + 22+3

+21+2 × 31+1 − 32+1 × 2

}
=

{
n

(
23 × 3 + 32 × 13

)
+ 25

+23 × 32 − 33 × 2

}
= n (24 + 117) + 32 + 72 − 54
= 141n + 50

Case 2::

For α = −1

Rα (NKB) =
{

n(2α+2 × 3α + 32α × 13) + 22α+3

+2α+2 × 3α+1 − 32α+1 × 2

}
R−1 (NKB) =

{
n(2−1+2 × 3−1 + 3−2 × 13) + 2−2+3

+2−1+2 × 3−1+1 − 3−2+1 × 2

}
=

{
n(21 × 3−1 + 3−2 × 13)
+21 + 21 × 30 − 3−1 × 2

}
= 2.111n + 3.333

Case 3::
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For α = 1/2

Rα (NKB) =
{

n(2α+2 × 3α + 32α × 13)
+22α+3 + 2α+2 × 3α+1 − 32α+1 × 2

}
R1/2 (NKB) =

{
n(21/2+2 × 31/2 + 32/2 × 13) + 22/2+3

+21/2+2 × 31/2+1 − 32/2+1 × 2

}
R1/2 (NKB) = n (9.797 + 39) + 27.393

= 48.797n + 27.393

Case 4::

For α = −1/2

Rα (NKB) =
{

n(2α+2 × 3α + 32α × 13) + 22α+3

+2α+2 × 3α+1 − 32α+1 × 2

}
R−1/2 (NKB) =

{
n(2−1/2+2 × 3−1/2 + 3−2/2 × 13) + 2−2/2+3

+2−1/2+2 × 3−1/2+1 − 3−2/2+1 × 2

}
= n (1.632 + 4.333) + 6.898
= 5.965n + 6.898

5|Conclusion
We examined a number of significant compounds, such as the benzeniod network for Non-kekulean benzoid
hydrocarbons, in order to assess their valency-based features. The findings are helpful in predicting many
different molecular characteristics of chemical compounds, including pi, boiling temperature, electron energy,
medicinal configuration, and a host of other ideas. We first generalize the graph and find the valency Table
1 using the Figure 1 for Gn; n ≥ 1. After that we developed the formula for M-Polynomial of non-kekulean
benzenoid hydrocarbon. With the help of the Table 1 and the formula for M-Polynomial, we calculate the first
& second Zagreb index, first & modified first K- Banhatti index, symmetric index, harmonic index, inverse
index, atom- bond connectivity index, geometric - arithmetic index, k-harmoni banhatti index, and randic index.
Together with thermodynamic entropy, chemical structure, energy, and computer sciences, the entropies can
play a critical role in bridging gaps in knowledge and establishing the foundation for future interdisciplinary
study. We intend to extend this approach to a range of chemical configurations, which will alter the direction of
future research in this area. We may also compute further results for these symmetric chemical compounds by
using the valency-based technique.
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