Document Type : Original Article


Faculty of Science, Yibin University, Yibin 644000, China.


In this work, we study the Variational Iteration Method (VIM) accompanied by He's polynomials for obtaining the solution of the temperature distribution in the casting-mould heterogeneous system with fractional order. The combined form of VIM and the Homotopy Perturbation Method (HPM) is called the Variational Iteration Homotopy Perturbation Method (VIHPM) which yields to implement the system of equations directly. The identification of the Lagrange multiplier is essentially more reliable and higher accurate for such type of problems. The approximate solution converges rapidly to the exact solution which confirms the accuracy of this approach. Some graphical representations are demonstrated to show the validity of this approach.


  • He, J. H. (1999). Variational iteration method–a kind of non-linear analytical technique: some examples. International journal of non-linear mechanics34(4), 699-708.
  • He, J. H. (2003). Homotopy perturbation method: a new nonlinear analytical technique. Applied mathematics and computation135(1), 73-79.
  • Edalatpanah, S. A., & Rashidi, M. M. (2014). On the application of homotopy perturbation method for solving systems of linear equations. International scholarly research notices2014.
  • Yıldırım, A., & Öziş, T. (2007). Solutions of singular IVPs of Lane–Emden type by homotopy perturbation method. Physics letters A369(1-2), 70-76.
  • Domairry, G., & Aziz, A. (2009). Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method. Mathematical problems in engineering2009.
  • Najafi, H. S., Edalatpanah, S. A., & Sheikhani, A. R. (2013). Application of homotopy perturbation method for fuzzy linear systems and comparison with Adomian’s decomposition method. Chinese journal of mathematics2013, 1-7.
  • Grzymkowski, R., Pleszczyński, M., & Słota, D. (2009). Application of the Adomian decomposition method for solving the heat equation in the cast-mould heterogeneous domain. Archives of foundry engineering9(4), 57-62.
  • Grzymkowski, R., Hetmaniok, E., & Slota, D. (2010). Application of the homotopy perturbation method for calculation of the temperature distribution in the cast-mould heterogeneous domain. Journal of achievement in material and manufacturing engineering43(1), 299.
  • Tripathi, R., & Mishra, H. K. (2018). Application of homotopy perturbation method using Laplace transform intended for determining the temperature in the heterogeneous casting-mould system. Differential equations and dynamical systems, 30, 1-14.
  • Vanani, S. K., Yildirim, A., Soleymani, F., Khan, M., & Tutkun, S. (2013). Solution of the heat equation in the cast‐mould heterogeneous domain using a weighted algorithm based on the homotopy perturbation method. International journal of numerical methods for heat & fluid flow, 23(3), 451–459.
  • Nadeem, M., & He, J. H. (2021). He–Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics. Journal of mathematical chemistry59(5), 1234-1245.
  • Nadeem, M., & Yao, S. W. (2020). Solving the fractional heat-like and wave-like equations with variable coefficients utilizing the Laplace homotopy method. International journal of numerical methods for heat & fluid flow31(1), 273-292.
  • Habib, S., Islam, A., Batool, A., Sohail, M. U., & Nadeem, M. (2021). Numerical solutions of the fractal foam drainage equation. GEM-International journal on geomathematics12(1), 1-10.
  • Wang, K. J., & Wang, K. L. (2021). Variational principles for fractal Whitham–Broer–Kaup equations in shallow water. Fractals29(02), 2150028.
  • Attia, N., Akgül, A., Seba, D., Nour, A., & Riaz, M. B. (2022). Reproducing kernel Hilbert space method for solving fractal fractional differential equations. Results in physics35, 105225.
  • He, K., Nadeem, M., Habib, S., Sedighi, H. M., & Huang, D. (2021). Analytical approach for the temperature distribution in the casting-mould heterogeneous system. International journal of numerical methods for heat & fluid flow, 32(3), 1168–1182.
  • Nadeem, M., & Li, F. (2019). He–Laplace method for nonlinear vibration systems and nonlinear wave equations. Journal of low frequency noise, vibration and active control38(3-4), 1060-1074.
  • Guo, S., & Mei, L. (2011). The fractional variational iteration method using He's polynomials. Physics letters A375(3), 309-313.
  • Ganji, D. D., Nourollahi, M., & Mohseni, E. (2007). Application of He’s methods to nonlinear chemistry problems. Computers & mathematics with applications54(7-8), 1122-1132.
  • Yıldırım, A. (2010). Variational iteration method for modified Camassa–Holm and Degasperis–Procesi equations. International journal for numerical methods in biomedical engineering26(2), 266-272.
  • Rezazadeh, G., Madinei, H., & Shabani, R. (2012). Study of parametric oscillation of an electrostatically actuated microbeam using variational iteration method. Applied mathematical modelling36(1), 430-443.
  • Nadeem, M., & Li, F. (2019). Modified Laplace variational iteration method for analytical approach of Klein–Gordon and Sine–Gordon equations. Iranian journal of science and technology, transactions A: science43(4), 1933-1940.
  • Wazwaz, A. M. (2007). The variational iteration method for solving linear and nonlinear systems of PDEs. Computers & mathematics with applications54(7-8), 895-902.
  • He, J. H. (1999). Homotopy perturbation technique. Computer methods in applied mechanics and engineering178(3-4), 257-262.
  • He, J. H., Elagan, S. K., & Li, Z. B. (2012). Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Physics letters a376(4), 257-259.