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Abstract 

   

1 | Introduction  

This paper aims to obtain the exact approximations by collocation method based on the first kind 

Chebyshev polynomials for solutions of the following pantograph Volterra Hammerstein integral 

equations. 

 

Where  𝑔(𝑠), 𝑅(𝑠, 𝑡) and 𝐺(𝑡, 𝑧(𝑡)) are smooth functions on their domains. We assume that the function 

𝐺(𝑡, 𝑧(𝑡)) satisfies in the Lipschitz condition with respect to the second variable.    

These equations appear in many branches of science such as control theory, biology, ecology and etc 

[1]-[7]. Severral methods have been proposed to solve the integral equations in [8]-[11], [5], [12]-[16], 

[6], [17]-[26]. Ansari and Mokhtary [27] presented the Legendre Tau method for solving Eq. (1) and 
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discussed applying the spectral methods to obtain a reliable numerical solution for Eq. (1) according to 

the well-known existence and uniqueness theorems in [27]. 

Here, we approximate the solution of Eq. (1) using the Lagrange interpolating polynomial. We consider 

a collocation method based on the first kind Chebyshev polynomials for solving Eq. (1) and get a non-

linear system that can be solved by Newton method to obtain the solutions at the grid pionts. In order 

to use the theory of orthogonal polynomials, we transform the Eq. (1) to [−1, 1] and analyze the 

convergence of the presented method. Some numerical examples prepared to test the efficiency and 

accuracy of the proposed method. We compare the numerical results of the presented method with the 

Legendre Tau method in [27]. 

2 | Algorithm of the Method  

The first kind of Chebyshev polynomials 𝑇𝑁(𝑠) are orthogonal at [−1, 1] with respect to the weight 

function 𝑤(𝑠) = (1 − 𝑠2)−1/2 and are defined by [28]: 

 

All Chebyshev polynomials 𝑇𝑁(𝑠) can be generated by the following recursion relation 

  

With  

The Gauss quadrature formula 

is exact for any polynomial of degree ≤  2𝑁 +  1. 

Now, in order to use the theory of orthogonal Chebyshev polynomials, applying the following change 

of variable 

For Eq. (1), we have 

 

Where 

 

 

 

 

Using the Lagrange interpolating polynomial, we can approximate �̃�(𝜁) as 

TN(s) = cos(Ncos−1(s)).  

TN(s) = 2sTN−1(s) − TN−2(s),   N = 2,3,….  

T0(s) = 1, T1(s) = s.  

∫ f(s)w(s)ds ≈∑f(sk

N

k=0

1

−1

)wk.  

{  
   
   
   
 
t =

q

2
η +

q

2
,       − 1 ≤ η ≤ ζ,   0 < q < 1,

s =
1

2
ζ +

1

2
,                         − 1 ≤ ζ ≤ 1.

  

z̃(ζ) = g̃(ζ) +∫ R̃
ζ

−1

(ζ, η)G̃(η, z̃(η))dη,   − 1 ≤  ζ ≤ 1. (2) 

{  
   
   
   
   
   
   
   
   
   
   
   
 

z̃(ζ) = z (
1

2
ζ +

1

2
),                               

g̃(ζ) = g (
1

2
ζ +

1

2
),                              

 R̃(ζ, η) =
q

2
R (

1

2
ζ +

1

2
,
q

2
η +

q

2
),          

G̃(η, z̃(η)) = G(
q

2
η +

q

2
, z (

q

2
η +

q

2
)) .
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Where 

And {𝑠𝑗 = −𝑐𝑜𝑠 (
(2𝑗+1)𝜋

2𝑁+2
)}
𝑗=0

𝑁

 are the Chebyshev Gauss quadrature points. Also, from Eq. (3), we can write 

Now, collocating the nodes 𝑠𝑖, 𝑖 = 0(1)𝑁,  in Eq. (2), we have 

Solving the non-linear system (5) by the Newton method, we get the values of �̃�(𝑠𝑗). Substituting these values 

into Eq. (3), the values of 𝐼𝑁
𝐶(�̃�(𝜁)) are obtained, for all ∈ [−1,1] . 

 3 | Convergence Analysis 

In this section, using some useful inequalities and lemmas from [29], [30], we will try to determine over 

estimate for ‖𝐼𝑁
𝐶(�̃�(𝜁)) − �̃�(𝜁)‖𝐿𝑤2 (−1,1). 

Theorem 1. Assume that 𝐼𝑁
𝐶(�̃�(𝜁)) is the spectral collocation solution of Eq. (2) given by Eq. (3). If the 

functions �̃�(𝜁), �̃�(𝜁, 𝜂) and  �̃�(𝜂, �̃�(𝜂)) are sufficiently smooth and �̃�(𝜂, �̃�(𝜂)) satisfies in the Lipschitz 

condition with respect to the second variable and 𝑒(𝜁) = 𝐼𝑁
𝐶(�̃�(𝜁)) − �̃�(𝜁), then we have 

Proof. The Eq. (5) can be written as follows 

Multiplying Eq. (7) by 𝑙𝑗(𝜁) and sum up from 0 to 𝑁, we have 

Subtracting Eq. (8) from the Eq. (2), we have 

Where  

IN
C(z̃(ζ)) =∑l j(ζ)z̃(sj).

N

j=0

 (3) 

li(η) =∏
η− s j

si − s j
,   i = 0(1)N.

N

j=0,j≠i

  

G̃ (ζ, IN
C(z̃(ζ))) =∑l j(ζ)G̃ (s j, z̃(sj)) .

N

j=0

  (4) 

z̃(si) = g̃(si) +∫ R ̃(si, η) G̃ (η, IN
C(z̃(η)))dη,   i = 0(1)N.

si

−1

 (5) 

‖e‖Lw2 (−1,1) ≤ CN−m (|g̃|
Hw
m;N(−1,1)

+ L|z̃|
Hw
m;N(−1,1)

)

+ CN−1 (‖G ̃‖ + N−mL|z̃|
Hw
m;N(−1,1)

). 
(6) 

z̃(si) = g̃(si) +∫ R ̃(si, η) G̃ (η, IN
C(z̃(η)))dη +

si

−1
∫ R ̃(si, η) G̃(η, z̃(η)) dη

si

−1

−∫ R ̃(si, η) G̃(η, z̃(η)) dη.
si

−1

 

(7) 

IN
C(z̃(ζ)) = IN

C(g̃(ζ))

+ IN
C(∫ R ̃(ζ, η) ( G̃ (η, IN

C(z̃(η))) − G̃(η, z̃(η)))dη )  
ζ

−1

+ IN
C (∫ R ̃(ζ, η) G̃(η, z̃(η)) dη).

ζ

−1

 

(8) 

e(ζ) = L2 + IN
C(∫ R ̃(ζ, η) ( G̃ (η, IN

C(z̃(η))) − G̃(η, z̃(η)))dη ) + L3.
ζ

−1

 (9) 
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The Eq. (9) can be rewritten as follows 

 

Where 

 

 

To simplicity, in the following the notation ‖. ‖ has been used instead of ‖. ‖𝐿𝑤2 (−1,1). Now, from the Eq. 

(10), we have 

 

Now, in order to determine over estimate for error, we should find the over bound for right hand side 

of the inequality Eq. (11) term by term.  

Using inequality (5.5.22) from [29], we have 

 

Where  

 

 

For Eq. (12), using Eq. (13) with  𝑚 = 1 and Lemma 3.8 from [30], we have 

 

 

 

 

 

Thus, from Eq. (14), we have 

 

To find over bound for ‖𝐿4‖, similar to process of obtaining Eq. (15), we have 

 

Since �̃�(𝜂, �̃�(𝜂)) satisfies in the Lipschitz condition with respect to the second variable. Thereby from 

Eq. (16), we have  

 

Where 𝐿 is the Lipschitz constant. Now, applying (5.5.22) from [29] for Eq. (17), we have  

 

{  
  
   
  
 
L2 = IN

C(g̃(ζ)) − g̃(ζ),                                                                       

L3 = IN
C(∫ R ̃(ζ, η) G̃(η, z̃(η)) dη) −∫ R ̃(ζ, η) G̃(η, z̃(η)) dη

ζ

−1

.
ζ

−1

  

e(ζ) = L2 +∫ R ̃(ζ, η) ( G̃ (η, IN
C(z̃(η))) − G̃(η, z̃(η)))dη + L3 + L4.

ζ

−1

 (10) 

L4 = IN
C
(∫ R ̃(ζ, η) ( G̃ (η, IN

C(z̃(η))) − G̃(η, z̃(η)))dη
ζ

−1
)

−∫ R ̃(ζ, η) ( G̃ (η, IN
C(z̃(η))) − G̃(η, z̃(η)))dη.

ζ

−1

 

 

‖e(ζ)‖ ≤ ‖L2‖ + ‖∫ R ̃(ζ, η) ( G̃ (η, IN
C(z̃(η))) − G̃(η, z̃(η)))dη ‖+‖L3‖ + ‖L4‖.

ζ

−1

 (11) 

‖L2‖ ≤ CN−m|g̃|
Hw
m;N(−1,1)

. (12) 

|g̃|
Hw
m;N(−1,1)

= ( ∑ ‖g̃ (k)‖
2
)

m

k=min (m,N+1)

1/2

. (13) 

‖L3‖ ≤ CN−1

(  
   
   
 

 
‖

‖
∫

∂(R̃(ζ, η))

∂ζ

ζ

−1

 G̃(η, z̃(η))dη + R̃(ζ, ζ)G̃(ζ, z̃(ζ))
‖

‖
 
)  
   
   
 

 

≤  CN−1

(  
   
   
 

‖

‖
∫

∂(R̃(ζ, η))

∂ζ

ζ

−1

 G̃(η, z̃(η))dη
‖

‖
+ ‖R̃(ζ, ζ)‖‖G̃(ζ, z̃(ζ))‖

)  
   
   
 

 

≤  CN−1(C‖G̃(η, z̃(η))‖ + ‖R̃(ζ, ζ)‖‖G̃(ζ, z̃(ζ))‖). 

(14) 

‖L3‖ ≤ CN−1‖G̃‖. (15) 

‖L4‖ ≤ CN−1 ‖G̃ (η, IN
C(z̃(η))) − G̃(η, z̃(η))‖.  (16) 

‖L4‖ ≤ CN−1L‖e‖.  (17) 

‖L4‖ ≤ CN−1−m L |z̃|
Hw
m;N(−1,1)

.   
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Using Lipschitz condition and (5.5.22) from [29], we have 

Combining the above estimates with Eq. (11) leads to the intended error estimate Eq. (6). 

4 | Numerical Results  

In this section, we use the proposed method for solving some numerical examples to test the accuracy of 

the method. We get the numerical results by Wolfram Mathematica 12.2. The presented method has been 

compared with the Legendre Tau method in [27]. For simplicity, we use the notation ‖. ‖ instead of ‖. ‖𝐿𝑤2 .    

Example 1. Consider the following pantograph-type Volterra Hammerstein integral equation [27] 

Where 

And the exact solution is 𝑧(𝑠) = 𝑡𝑎𝑛(𝑠). The function 𝐺(𝑡, 𝑧(𝑡)) satisfies in the Lipschitz condition with 

respect to the second variable. 

Table 1 contains a comparison of the 𝐿2-norms of the error function between the presented method and 

the Legendre Tau method in [27] for Example 1 with 𝑞 =  
1

2
.  Figs. 1 and 2 show the plots of the obtained 

errors |𝑧 − 𝐼𝑁
𝐶(𝑧)| by the presented method in Example 1 for 𝑁 = 8 and 𝑁 = 32, respectively, with 𝑞 =

1

2
. Fig. 

9 shows tending ‖𝑧 − 𝐼𝑁
𝐶(𝑧)‖ to zero by increasing 𝑁 in Example 1 with 𝑞 =

1

2
. 

Table 2 contains the obtained errors ‖𝑧 − 𝐼𝑁
𝐶(𝑧)‖ by the presented method for Example 1 with 𝑞 =

7

10
.  Figs. 3 

and 4 show the plots of the obtained errors |𝑧 − 𝐼𝑁
𝐶(𝑧)| by the presented method in Example 1 for 𝑁 = 8 and 

𝑁 = 32, respectively, with 𝑞 =
7

10
. Fig. 10 shows tending ‖𝑧 − 𝐼𝑁

𝐶(𝑧)‖ to zero by increasing 𝑁 in Example 1 

with 𝑞 =
7

10
. 

Example 2. Consider the following pantograph-type Volterra Hammerstein integral equation [27] 

Where 

And the exact solution is 𝑧(𝑠) = 𝑠𝑖𝑛ℎ−1(
𝑠

2
). The function 𝐺(𝑡, 𝑧(𝑡)) satisfies in the Lipschitz condition with 

respect to the second variable. 

‖∫ R ̃(ζ, η) (G̃ (η, IN
C(z̃(η))) − G̃(η, z̃(η)))dη ‖ ≤ CLN−m|z̃|

Hw
m;N(−1,1)

ζ

−1
.   

z(s) = g(s) + ∫ R(t, s)G(t, z(t))dt,        s ∈ [0,1]
qs

0
.   

{  
   
   
   
 
   
   
   
   
 
 

g(s) = −
1

4
exp(s)(s − sin(s)) + tan (s),                           

q =
1

2
,
7

10
,                                                                       

R(s, t) = exp(s) cos2(t),                                                

G(t, z(t)) = z2(t).                                                           

  

z(s) = g(s) +∫ R(t, s)G(t, z(t))dt,        s ∈ [0,1].  
qs

0

  

{  
   
   
   
 
   
   
   
   
 
 

g(s) =
1

8
(4 cosh (

3s

4
) − 4 cosh(s) + s sinh (

3s

4
)) + sinh−1(

s

2
),                           

q =
1

4
,                                                                                                                  

R(s, t) = cosh(s − t),                                                                                           

G(t, z(t)) = sinh(z(t)).                                                                                      

  



 

 

66 

S
a
b

e
ri

 N
a
ja

fi
 e

t 
a
l.

|
C

o
m

. 
A

lg
. 

N
u

m
. 

D
im

. 
1(

2
) 

(2
0
2
2
) 

6
1-

7
1

 

 

Table 3 contains a comparison of the 𝐿2-norms of the error function between the presented method and 

the Legendre Tau method in [27] for Example 2. Figs. 5 and 6 show the plots of the obtained errors 

|𝑧 − 𝐼𝑁
𝐶(𝑧)| by the presented method for Example 2 with 𝑁 = 8 and 𝑁 = 32, respectively. Fig. 11 shows 

tending ‖𝑧 − 𝐼𝑁
𝐶(𝑧)‖ to zero by increasing 𝑁 in Example 2. 

Example 3. Consider the following pantograph-type Volterra Hammerstein integral equation 

 

Where 

 

 

 

 

And the exact solution is 𝑧(𝑠) = 𝑐𝑜𝑠(
𝑠

4
). The function 𝐺(𝑡, 𝑧(𝑡)) satisfies in the Lipschitz condition with 

respect to the second variable. 

Table 4 contains the obtained errors ‖𝑧 − 𝐼𝑁
𝐶(𝑧)‖ by the presented method for Example 3.  Figs. 7 and 8 

show the plots of the obtained errors |𝑧 − 𝐼𝑁
𝐶(𝑧)| by the presented method in Example 3 for 𝑁 = 8 and 

𝑁 = 32, respectively. Fig. 12 shows tending ‖𝑧 − 𝐼𝑁
𝐶(𝑧)‖ to zero by increasing 𝑁 in Example 3. 

Table 1. Comparison of the presented method and the Legendre Tau method in [27] for example 1 

with 𝐪 =
𝟏

𝟐
. 

 

 

 

 

Table 2. The obtained errors ‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖  by the presented method for example 1 with 𝐪 =

𝟕

𝟏𝟎
. 

 

  

Table 3. Comparison of the presented method and the Legendre Tau method in [27] for example 2. 

 

 

 

 

z(s) = g(s) +∫ R(t, s)G(t, z(t))dt,        s ∈ [0,1].  
qs

0

  

{  
   
   
   
   
   
   
   
   
   
   
   
 

g(s) = 2.125 − 0.42s2 + cos (
s

4
) − 2 cos (

2s

5
) − 0.125 cos (

4s

5
) − 1.8s sin (

2s

5
) −

0.225s sin (
4s

5
),                                                                                                   

q =
8

10
,                                                                                                                  

R(s, t) = s + t,                                                                                                       

G(t, z(t)) = z(t)4.                                                                                                 

  

𝐍 ‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖ for the    

Presented Method 

‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖ for the       

Legendre Tau Method 

2 4.99e -02 −− 
4 1.97e -03 6.17e − 02 
8 1.19e −05 7.96e − 03 
16 2.03e -10 1.62e − 04 

32 1.29e −15 8.66e − 08 
64 8.66e -16 3.31e − 14 

𝐍 2 4 8 16 32 64 

‖z − IN
C(z)‖ 6.01e -02 1.50e − 03 1.23e − 05 1.97e − 10 8.77e − 16 1.74e − 16 

𝐍 ‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖ for the Presented Method ‖𝐳 − 𝐈𝐍

𝐂 (𝐳)‖ for the Legendre Tau Method 

2 4.23e -13 −− 
4 1.69e −14 6.29e − 04 
8 8.49e -16 1.17e − 05 
16 5.69e -16 1.24e − 08 
32 3.95e -16 4.94e − 14 
64 1.04e −16 −− 
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Table 4. The obtained errors ‖𝒛 − 𝑰𝑵
𝑪 (𝒛)‖ by the presented method for example 3. 

 

 

Fig. 1. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟖 in example 1 with 

𝐪 =
𝟏

𝟐
. 

Fig. 2. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟑𝟐 in example 1 with 𝐪 =

𝟏

𝟐
. 

 

Fig. 3. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟖 in example 1 with 𝐪 =

𝟕

𝟏𝟎
. 
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Fig. 4. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟑𝟐 in example 1 

with 𝐪 =
𝟕

𝟏𝟎
. 

Fig. 5. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟖 for 

example 2. 

Fig. 6. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟑𝟐 for example 2. 

Fig. 7. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟖 for example 3. 

Fig. 8. Plot of the obtained errors |𝐳 − 𝐈𝐍
𝐂 (𝐳)| by the presented method for 𝐍 = 𝟑𝟐 for example 3. 
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Fig. 9. Graph of tending  ‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖ to zero by increasing 𝐍  in example 1 with 𝐪 =

𝟏

𝟐
. 

Fig. 10. Graph of tending  ‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖ to zero by increasing 𝐍  in example 1 with 𝐪 =

𝟕

𝟏𝟎
. 

Fig. 11. Graph of tending  ‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖ to zero by increasing 𝐍  in example 2. 

Fig. 12. Graph of tending  ‖𝐳 − 𝐈𝐍
𝐂 (𝐳)‖ to zero by increasing 𝐍  in example 3. 
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5 | Conclusion 

In this work, we applied a spectral collocation method to the numerical solution of the pantograph-type 

Volterra Hammerstein integral equations based on the first kind Chebyshev polynomials. We employed 

the Lagrange interpolating polynomial to approximate the solution.  

The convergence of the presented method is analyzed. Some numerical examples are prepared to test 

the accuracy of the proposed method. We observed that the proposed method is more accurate than 

Legendre Tau method in [27]. The other polynomials can be used for solving these equations such as 

Chelyshkov polynomials, Legendre polynomials, other kinds of Chebyshev polynomials, and so on. 
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