Document Type : Original Article


Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran.


System of linear equations plays an important role in science and engineering. One of the applications of this system occurs in the discretization of the partial differential equations. This paper aims to investigate an experimental comparison between two kinds of iterative models for solving the elliptic partial differential equations. Different tools of solution such as stationary and non-stationary iterative methods with preconditioning models have been studied. Two types of discretization schemes (centered and hybrid) have been also considered for the comparison of the solution.


  1. Paige, C. C., & Saunders, M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM journal on numerical analysis, 12(4), 617-629.
  2. Björck, Å. (1996). Numerical methods for least squares problems. Society for Industrial and Applied Mathematics.
  3. Wang, P., Gao, Y., Yu, N., Ren, W., Lian, J., & Wu, D. (2022). Distributed and communication-efficient solutions to linear equations with special sparse structure. Systems & control letters, 160, 105065.
  4. Edalatpanah, S. A. (2020). Systems of neutrosophic linear equations. Neutrosophic sets and systems, 33(1), 92-104.
  5. Axelsson, O. (1996). Iterative solution methods. Cambridge university press.
  6. Varga, R. S. (1962). Iterative analysis. Berlin: Springer.
  7. Young, D. M. (2014). Iterative solution of large linear systems. Elsevier.
  8. Hadjidimos, A. (1978). Accelerated overrelaxation method. Mathematics of computation32(141), 149-157.
  9. Saberi Najafi, H., & Edalatpanah, S. A. (2011). Fast iterative method-FIM. Application to the convection–diffusion equation. Journal of information and computing science6(4), 303-313.
  10. Argyros, I. K., & Szidarovszky, F. (2018). The theory and applications of iteration methods. CRC Press.
  11. Concus, P., & Golub, G. H. (1976). A generalized conjugate gradient method for nonsymmetric systems of linear equations. In Computing methods in applied sciences and engineering (pp. 56-65). Springer, Berlin, Heidelberg.
  12. Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics.
  13. Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., ... & Van der Vorst, H. (1994). Templates for the solution of linear systems: building blocks for iterative methods. Society for Industrial and Applied Mathematics.
  14. Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing7(3), 856-869.
  15. Freund, R. W., & Nachtigal, N. M. (1994). An implementation of the QMR method based on coupled two-term recurrences. SIAM Journal on scientific computing15(2), 313-337.
  16. Sonneveld, P. (1989). CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM journal on scientific and statistical computing10(1), 36-52.
  17. G., Alternating direction implicit preconditioning for nonsymmetric systems of linear equations, SIAM J. Sci. Statist. Comput.,15(1994) 369–384.
  18. Meyer, P. D., Valocchi, A. J., Ashby, S. F., & Saylor, P. E. (1989). A numerical investigation of the conjugate gradient method as applied to three‐dimensional groundwater flow problems in randomly heterogeneous porous media. Water resources research25(6), 1440-1446.
  19. Pini, G., & Gambolati, G. (1990). Is a simple diagonal scaling the best preconditioner for conjugate gradients on supercomputers? Advances in water resources13(3), 147-153.
  20. Bruaset, A. M. (2018). A survey of preconditioned iterative methods. Routledge.
  21. Sundar, S., & Bhagavan, B. K. (1999). Comparison of Krylov subspace methods with preconditioning techniques for solving boundary value problems. Computers & mathematics with applications38(11-12), 197-206.
  22. Van der Vorst, H. A. (2003). Iterative Krylov methods for large linear systems(No. 13). Cambridge University Press.
  23. Meijerink, J. A., & Van Der Vorst, H. A. (1977). An iterative solution method for linear systems of which the coefficient matrix is a symmetric 𝑀-matrix. Mathematics of computation31(137), 148-162.
  24. Peaceman, D. W., & Rachford, Jr, H. H. (1955). The numerical solution of parabolic and elliptic differential equations. Journal of the society for industrial and applied mathematics3(1), 28-41.
  25. Starke, G. (1994). Alternating direction preconditioning for nonsymmetric systems of linear equations. SIAM journal on scientific computing15(2), 369-384.
  26. Milaszewicz, J. P. (1987). Improving jacobi and gauss-seidel iterations. Linear algebra and its applications93, 161-170.
  27. Gunawardena, A. D., Jain, S. K., & Snyder, L. (1991). Modified iterative methods for consistent linear systems. Linear algebra and its applications154, 123-143.
  28. Kohno, T., Kotakemori, H., Niki, H., & Usui, M. (1997). Improving the modified gauss-seidel method for Z-matrices. Linear algebra and its applications267, 113-123.
  29. Usui, M., Niki, H., & Kohno, T. (1994). Adaptive gauss-seidel method for linear systems. International journal of computer mathematics51(1-2), 119-125.
  30. Kotakemori, H., Harada, K., Morimoto, M., & Niki, H. (2002). A comparison theorem for the iterative method with the preconditioner (I+ Smax). Journal of computational and applied mathematics145(2), 373-378.
  31. Hirano, H., & Niki, H. (2001). Application of a preconditioning iterative method to the computation of fluid flow. Numerical functional analysis and optimization22(3-4), 405-417.
  32. Hadjidimos, A., Noutsos, D., & Tzoumas, M. (2003). More on modifications and improvements of classical iterative schemes for M-matrices. Linear algebra and its applications364, 253-279.
  33. Wang, L., & Song, Y. (2009). Preconditioned AOR iterative methods for M-matrices. Journal of computational and applied mathematics226(1), 114-124.
  34. Saberi Najafi. H., & S. A. (2012). New model for preconditioning techniques with application to the boundary value problems.  Journal of advanced research in computer engineering: an international journal, 6(2), 107-114.
  35. Wu, M., Wang, L., & Song, Y. (2007). Preconditioned AOR iterative method for linear systems. Applied numerical mathematics57(5-7), 672-685.
  36. Yuan, J. Y., & Zontini, D. D. (2012). Comparison theorems of preconditioned Gauss–Seidel methods for M-matrices. Applied mathematics and computation219(4), 1947-1957.
  37. Saberi Najafi, H., & Edalatpanah, S. A. (2013). Comparison analysis for improving preconditioned SOR-type iterative method. Numerical analysis and applications6(1), 62-70.
  38. Najafi, H. S., & Edalatpanah, S. A. (2013). A collection of new preconditioners for solving linear systems. Scientific research and essays8(31), 1522-1531.
  39. Saberi Najafi, H., Edalatpanah, S. A., & Refahisheikhani, A. H. (2018). An analytical method as a preconditioning modeling for systems of linear equations. Computational and applied mathematics, 37(2), 922-931.
  40. Tian, Z., Li, X., Dong, Y., & Liu, Z. (2021). Some relaxed iteration methods for solving matrix equation AXB= C. Applied mathematics and computation, 403, 126189.
  41. Liu, Z., Li, Z., Ferreira, C., & Zhang, Y. (2020). Stationary splitting iterative methods for the matrix equation AXB= C. Applied mathematics and computation, 378, 125195.
  42. Cui, L. B., Zhang, X. Q., & Wu, S. L. (2020). A new preconditioner of the tensor splitting iterative method for solving multi-linear systems with M-tensors. Computational and applied mathematics, 39(3), 1-16.
  43. Edalatpanah, S. A. (2020). On the preconditioned projective iterative methods for the linear complementarity problems. RAIRO-operations research, 54(2), 341-349.
  44. Mao, X., Wang, X., Edalatpanah, S. A., & Fallah, M. (2019). The monomial preconditioned SSOR method for linear complementarity problem. IEEE Access7, 73649-73655.