
 Corresponding Author: s.a. edalatpanah@gmail.com

 10.22105/JFEA.2021.281500.1061

E-ISSN: 2676-6167 | P-ISSN: 2538-5100 |

Abstract

1 | Introduction

Solving of system of linear equations (SLE) often occur in a wide variety of area, including numerical

differential equations, eigenvalue problems, economics models, design and computer analysis of

circuits, power system networks, chemical engineering processes, physical and biological sciences [1]-

[4]. Such systems are typically solved by two different types of methods; iterative methods and direct

methods. The nature of the problem at hand determines which method is more suitable.

A direct method for solving large sparse linear systems of the form of Ax=b involves explicit

factorization of the coefficient matrix A into the product of two certain matrices such as triangular

matrices [5], [6]. This is a highly time and memory consuming step; nevertheless, direct methods are

important because of their generality and robustness. For linear systems arising in certain applications,

they are the only feasible solution methods.

 Computational Algorithms and Numerical Dimensions

 www.journal-cand.com

Com. Alg. Num. Dim Vol. 1, No. 1 (2022) 1–24.

 Paper Type: Original Article

An Experimental Comparison of Two Preconditioned

Iterative Methods to Solve the Elliptic Partial Differential

Equations
Seyyed Ahmad Edalatpanah *

Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran; s.a. edalatpanah@gmail.com.

Citation:

 Edalatpanah, S. A. (2022). An experimental comparison of two preconditioned iterative methods to

solve the elliptic partial differential equations. Computational algorithms and numerical dimensions, 1 (1),

1-24.

Accepted: 25/10/2021 Revised: 14/09/2021 Reviewed: 12/09/2021 Received: 22/08/2021

System of linear equations plays an important role in science and engineering. One of the applications of this system

occurs in the discretization of the partial differential equations. This paper aims to investigate an experimental

comparison between two kinds of iterative models for solving the elliptic partial differential equations. Different tools

of solution such as stationary and non-stationary iterative methods with preconditioning models have been studied. Two

types of discretization schemes (centered and hybrid) have been also considered for the comparison of the solution.

Keywords: System of linear equations, iterative methods, preconditioning technique, partial differential equations, finite

differences methods.

Licensee

Computational

Algorithms and

Numerical Dimensions.

This article is an open

access article distributed

under the terms and

conditions of the Creative

Commons Attribution

(CC BY) license

(http://creativecommons.

org/licenses/by/4.0).

mailto:dastam66@gmail.com
http://www.journal-aprie.com/
https://orcid.org/0000-0001-9349-5695
pourqasem
Textbox
https://doi.org/10.22105/cand.2022.155122

2

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

Furthermore, direct methods provide an effective means for solving multiple systems with the same

coefficient matrix and different right-hand side vectors because the factorizations need to be performed

only ones. The trouble with sparse direct methods is that, because fill-in, their memory requirement

grows faster than the size of the problems [7].

 Iterative methods are generally much simpler to describe in details than direct methods, because the

lack of fill-in and simple matrix access remove the need for sophisticated data structures and graph

theoretic analysis. On the other hand, the numerical behavior of iterative methods is much more

complicated than that of direct methods [7]-[10].

 To sum up, in sparse iterative methods, the spectral properties of the coefficient matrix determine the

effectiveness of the method. Therefore, it is a challenge to make them robust enough to serve in portable

libraries and environment used for a wide variety of problem domains. In this paper we apply two

preconditioned iterative method for solving PDE problems and also compare these two kinds of

strategys.

2 | Iterative Methods for Systems of Linear Equations

Consider system of linear equations as

A system of nonlinear equations, given in fixed point form

can be solved by choosing an initial approximation 𝑥(0) ∈ ℝ𝑛 and by successively calculating more

accurate approximations using the iteration:

 Stationary iterative methods for the Eq. (1) have the basic form

Where 𝐵 ∈ ℝ𝑛×𝑛 and 𝑐 ∈ ℝ𝑛do not depend on 𝑘 . Initially, however, the linear system Eq. (1) must be

transformed into a form to which the iterative method is applicable. For instance, the coefficient matrix

can be written as:

where 𝐷 = 𝑑𝑖𝑎𝑔(𝑎11, … , 𝑎𝑛𝑛), 𝐿 is a strictly lower triangular matrix and 𝑈 is the respective upper triangular

part of 𝐴. For any splitting, A=M-N, where M is nonsingular, the iterative method for solving linear

systems of Eq. (1) is

This iterative process converges to the unique solution 1x A b−= for initial vector value 0 nx R if and

only if the spectral radius 1ρ(M N) 1− , where 1T M N−= is called the iteration matrix.

Here, we introduce some stationary iterative methods, shortly.

Ax = b, (1)

x = T(x), (2)

x (k) = T(x (k−1)), k = 1,2,3,…. (3)

x (k) = Bx (k−1) + c, k = 1,2,3,…, (3)

A = D − L −U, (4)

𝑥(𝑘) = 𝑀−1𝑁𝑥(𝑘−1) +𝑀−1𝑏, 𝑘 = 1,2,3,…, (5)

3

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

2.1| Stationary Iterative Methods for SLE

The Jacobi method ([5], [6])

 For this method M=D and N=M-A. A single iteration step of the Jacobi method corresponds to the local

solution of the linear system for a single variable. The resulting method is easy to implement, but often

converges very slowly.

The Gauss-Seidel method ([5], [6)]

 this is like the Jacobi method, except that it uses updated approximations as soon as they are available. In

general, it will converge faster than the Jacobi method. For this method we have: M=D-L.

The SOR method ([5]-[7])

This can be derived from the Gauss-Seidel method by introducing an extrapolation parameter 𝑤. For the

optimal choice of 𝑤, the convergence speed can be increased substantially. The SOR method is defined by

𝑀 =
1

w
(𝐷 − 𝑤𝐿) And 𝑁 =

1

w
((1 − 𝑤)𝐷 + 𝑤𝑈).

 So, we have
1

SOR
T (D wL) [(1 w)D wU].−= − − +

The SSOR method ([7])

Each iteration step of the Symmetric SOR (SSOR) method consists of two semi-iterations the first of

which is a usual (forward) SOR iteration followed by a backward SOR iteration, namely an SOR where the

roles of L and U have been interchanged.

The AOR method ([8])

This method uses two parameters r (called relaxation parameter) and w (called extrapolation parameter).

The AOR method is defined by 𝑀 =
1

w
(𝐷 − 𝑟𝐿) and 𝑁 =

1

w
((1 − 𝑤)𝐷 + (𝑤 − 𝑟)𝐿) + 𝑤𝑈). So, we have:

 1

AOR
T (D rL) [(1 w)D (w r)L wU].−= − − + − +

The FIM method ([9])

Each iteration step of the FIM consists of n semi-iterations as follows:

+ +
−

+ + +
−

− − −
+ + +

−

− −
+ +

+ − +

= + +

 = + +

 = + +

= + + − +

1 1
(i) (i)

1 (i)n n
D

2 2 1
(i) (i) (i)

1n n n
D

n 1 n 1 n 2
(i) (i) (i)

1n n n
D

n 1 n 2
(i) (i)

(i 1) 1 (i 1) n n
D

X [b LX UX],

x [b Lx Ux],

x [b Lx Ux],

x [b Lx U{(1 w)x wx } .w R

4

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

2.2| Non-Stationary Iterative Methods

Non-stationary iterative methods differ from stationary methods in that the computations involve

information that changes at each iteration step. This continuously updated information consists primarily

of inner products of residuals or other vectors arising from the method. The best known non-stationary

iterative methods for solving linear systems are:

The Conjugate Gradient method (CG) generates a sequence of conjugate vectors which are the residuals

of iterates. These vectors are also the gradients of a quadratic functional, the minimization of which is

equivalent to the solution of the linear systems. The CG method is extremely effective when the

coefficient matrix is symmetric and positive definite [11], [12].

The MINRES method and the SYMMLQ method are alternatives to the CG method which are used if

the coefficient matrix is symmetric but possibly indefinite. The SYMMLQ method generates the same

solutions as the CG method if the coefficient matrix is symmetric and positive definite [5], [14].

The CGNE method and the CGNR method are specific CG methods for problems with non-symmetric

and non-singular coefficient matrices. These methods are based on the fact that the T TA A, AA and

TAA are always symmetric and positive definite. The CGNE method solves the system TAA Y b= for

any y and then computes the solution Tx A Y= . The CGNR method solves T(A A)x b= for x where

Tb A b= . The convergence of these methods may be slow since the spectrum of T TA A, AA and

TAA will be less favor able than the spectrum of A [5], [13].

The GMRES method computes a sequence of orthogonal vectors (as in the MINRES method), and

combines them using a least-squares solve and update. However, unlike the MINRES method, it

requires storing the whole sequence, so a large amount of storage is needed. This method is useful for

general non-symmetric matrices [12], [14].

The BiCG method generates two sequences of vectors: one based on a system with the original matrix

A and one 𝐴𝑇, which are made mutually orthogonal, or bi-orthogonal. The BiCG method is useful when

the matrix is non-symmetric and non-singular [12], [13], [15].

The QMR method applies a least-squares solve and update to the BICG residuals, thereby smoothing

out the irregular convergence behavior of the BICG method. It also largely avoids the breakdowns that

can occur in the BICG method [13], [15].

The CGS method is a variant of the BICG method that applies the updating operations of both

sequences to the same vectors. An advantage is that this method does not need the multiplications by

𝐴𝑇 , but on the other hand convergence may be much more irregular than for the BICG method [13],

[14], [16].

The BiCGSTAB method is a variant of the BICG method, like the CGS method. The difference is that

the BiCGSTAB method uses different updates for the sequence corresponding to 𝐴𝑇 in order to obtain

smoother convergence than the CGS method [13], [14], [17].

5

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

3 | Preconditioning Methods for Systems of Linear Equations

A matrix P is called a preconditioner if the matrix P enables a transformation of the linear system into an

equivalent system (with the same solution) which has more favorable spectral properties. For Eq. (1)

preconditioning, transforms the system to

 Furthermore, it can be transformed to

where P and F are linear operators, called left and right preconditioners respectively. And for example, for

stationary iterative methods we have:

+ − −= + =(i 1) 1 (i) 1

p p p
x M N x M Pb, i 0, 1, .

 where PA=MP-NP and MP is nonsingular.

 Also

+ − −= + =(i 1) 1 (i) 1

F F F
y M N y M b, i 0, 1,..

 where AF=MF-NF and MF is nonsingular.

The majority of preconditioners fall in the first category; i.e. Eq. (6).

The purpose of preconditioning is to change the matrix of the system, in order to accelerate the

convergence of iterative solvers.

We note that applying a preconditioner involves extra cost and most preconditioners involve an amount

of computational work proportional to the number n of variables in their application. They thus multiply

the amount of computational work per iteration by a constant factor. On the other hand, the number of

iterations is usually only improved by a constant, i.e., the saving in computational works is independent of

the matrix size. Therefore, there is a trade-off between the cost of constructing and applying the

preconditioner and the gain of increased convergence speed.

To improve the convergence rate of a basic iterative method, various models of preconditioning systems

have been proposed. Here, we introduce some models of preconditioning, shortly.

Jacobi Preconditioning ([18],[19])

 The Jacobi or point-preconditioner consists of just the diagonal of the matrix A:

P ≔ diag(a11, a22, … , ann).

Theoretically, there is no need for any extra storage, but in practice storage is allocated for the reciprocals

of the diagonal elements in order to avoid repeated (un-necessary) division operations.

If the index set J:={1,…,n}is partitioned into disjoint subsets 𝐽𝑖, a block version can derived:

= n nPAx Pb, P R . (6)

= =AFy b, x Fy, (7)

6

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

pij = {
aij, if i,j ∈Jk
0, else.

The preconditioner is now a block-diagonal matrix; this is the Jacobi block-preconditioning.

Jacobi preconditioners need very little storage, and they are easy to implement, even on parallel

computers. On the other hand, more sophisticated preconditioners usually yield much better

improvements in the rate of convergence.

SSOR preconditioning ([5], [20])

 If the symmetric matrix A is decomposed as 𝐴 = 𝐷 + 𝐿 + 𝐿𝑇 , then the SSOR matrix is defined as:

P ≔ (D + L)D−1(D + L)T,

or, parameterized by 𝜔,

𝑃𝜔 ≔
1

2 − 𝜔
(
1

𝜔
𝐷 + 𝐿) (

1

𝜔
𝐷)

−1

(
1

𝜔
𝐷 + 𝐿)

𝑇

.

Using the optimal value of the relaxation factor 𝜔 reduces the number of iterations, but in practice, this

optimal value is prohibitively expensive to compute. As 𝑃 is given in factored form, this method shares

many of the properties of preconditioning methods based on incomplete factorizations. Since the

factorization of the SSOR preconditioner is given a priori, there is no danger of a breakdown in the

construction phase.

Note. Above preconditioners called also preconditioners based on relaxation technique. For example, if

the preconditioner P be as P=D, then this preconditioner is called Jacobi. Also if 𝑃 =
1

w
(𝐷 − 𝑤𝐿) then

we have SOR preconditioner where for w = 1, we have Gauss–Seidel preconditioner and so on.

Incomplete factorization [13], [20]-[23]

Originally, preconditioners were based on direct solution methods in which part of the computation in

skipped. This leads to the notion of incomplete LU (or ILU) factorization.

The construction of an incomplete factorization may break down (due to a division by zero pivot

element). The existence of an incomplete factorization is guaranteed for many factorization strategies, if

the original matrix A has certain properties [23], [24].

An important consideration for incomplete factorization preconditioners is the cost of the factorization

process. These costs bear fruit only if the iterative method without preconditioning converges very slowly,

or if the same matrix P can be used for solving several linear systems, as can be done, for instance, in

Newton’s method for large nonlinear systems with a sparse Jacobian matrix.

ADI preconditioning

In 1994, Starke proposed the use of the Alternating Direction Implicit (ADI) method [25] as a

preconditioning technique for the Krylov subspace methods for non-symmetric linear systems. Let 𝐴 =

𝐴1 + 𝐴2,where 𝐴1and 𝐴2 are nonsingular. The alternative direction implicit method for solving the linear

system Ax = b is in the following form:

{

(A 1 + r1I)ui+1

2

= b − (A 2 − r1I)ui,

(A 2 + r2I)ui+1 = b − (A 1 − r2I)ui+1
2

.

The ADI preconditioner is as 𝑃 ≔ (𝐴1 + 𝑟1𝐼)(𝐴2 + 𝑟2𝐼) . Parameters 𝑟1, 𝑟2 are acceleration parameters.

Varga [6] and Young [7] presented the optimum value for 𝑟1, 𝑟2.

preconditioners of (I+S)-type

In the literature, various authors have suggested different models of (I+S)-type preconditioner for the

above-mentioned problem. In 1987 Milaszewicz [26] presented the preconditioner (I+S'), where the

elements of the first column below the diagonal of A eliminate. Gunawardena, Jain and Snyder

considered [27] a modification of Jacobi and Gauss-Seidel methods and reported in 1991 that the

7

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

convergence rate of Gauss–Seidel method using the following preconditioning matrix is superior to that

of the standard Gauss–Seidel method .Where,

 P=I+S.

And,

− = + = −

= =

i , j

i , j

a , for j i 1, i 1,2,..., n 1
S (s) 0 , for otherwise.

Kohno et al. [28] proposed an extended modification of Jacobi and Gauss-Seidel methods. Their

preconditioner is (α
I s+), where

− = +

= =

i ij i

α ij n n

α a , j i 1 ,0 α 1
s (s) 0 , otherwise.

They also presented some numerical investigation for the choice of the optimal parameter. In [29] Usui et

al. proposed to adopt

 P=I+U,(or I+L),

as the preconditioned matrix, where U (L) is strictly upper (strictly lower) triangular of matrix A. They

obtained excellent convergence rate compared with that by other iterative methods. Kotakemori et al. in

[30] used

 = +
max

P I S ,

 where Smax is

− = −

= =

i
i ,V

m

max ij

a , for i 1,2,..., n 1, j i
S (s) 0 , for otherwise,

and,

 =
i ijj

V min j j max a for i n.

Harano and Niki [31] considered the preconditioner

 = + + +P I (1 γ)(L U)

where is small positive number.

Hadjidimos et al. [32] extended, generalized and compared the previous works. Wang and Song [33]

presented a general form of the preconditioners for nonsingular M-matrices.

Saberi Najafi and Edalatpanah

in [34] established

8

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

 = +
min

P I S , ,

where for i 1 : n 1= − and j i :

= −

i

min
i, j

0 , if j Q ,
S a , for otherwise,

and,

= = −

i i , j i ,kk
Q j j i & a min a for i n 1.

Furthermore, some other researchers have considered different models in the literature [35]-[44].

3 | Results

In this section, we apply some iterative methods for solving elliptic PDE with Finite Differences Methods

(FDM). Here, we establish our research about this topic.

Consider the following elliptic PDE (advection-diffusion equation):

() () ()

+ + + =

2 2

2 2

u u u u
ε a x,y b x,y f x,y ,

x yx y

With the following bonditions;

Dirichlet on x=0, y=0, either Neumann at y=Y and x=X or Dirichlet on y=Y and x=X,

where

() () − = + =
y2ε 0 ; x 0,X and y 0,Y a x,y 1 x ; b x,y Xe ,

and,

f(x,y) = ε (
𝑦

𝑋2
𝑒
−
𝑥

𝑋 + 𝑒−(
𝑥

𝑋
+
𝑦

𝑌
)(

2

𝑌
−

𝑦

𝑌2
−

𝑦

𝑋2
)) + + 𝑒−

𝑥

𝑋 (X𝑒−𝑦 −
𝑦 (1+ 𝑥2)

𝑋
) + 𝑒

−(
𝑥

𝑋
+
𝑦

𝑌
)
 (
𝑦 (1+ 𝑥2)

𝑋
 - X𝑒−𝑦 +

𝑋

𝑌
𝑦 𝑒−𝑦) .

This equation has the following analytical solution:

() ()−−= −

y/Yx/Xu x,y e 1 e y

Based on FDM, we solve the equation after the following differencing:

I. Central differencing.

II. Upwind differencing.

9

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

To see the convergence behavior of above FDMs by two iterative methods, we select Saberi Najafi and

Edalatpanah’s method (FIM [5]) as stationary iterative method and a good preconditioned nons-tationary

iterative method called the preconditioned (Incomplete LU Decomposition) BiCGSTAB method. And

finally, we show:

− Plot the residual reduction.

− Plot the error map.

− Estimate the truncation error.

− Plot the smoothing factor of the iteration.

For the above problem, two types of discretization schemes (centered and hybrid) have been compared

for the comparison of the solution.

For both schemes, we choice:

∂2u

∂x2
]i,j =

Ui+1,j − 2 Ui,j + Ui−1,j

∆x2
+ O(∆x2),

∂2u

∂y2
]i,j =

Ui,j+1 − 2 Ui,j + Ui,j−1

∆y2
+ O(∆y 2).

And for hybrid Scheme:

𝜕𝑢

𝜕𝑥
]i,j =

𝑈𝑖,𝑗−𝑈𝑖−1,𝑗

∆𝑥
 + 𝑂(∆𝑥),

𝜕𝑢

𝜕𝑥
]i,j =

𝑈𝑖,𝑗−𝑈𝑖,𝑗−1

∆𝑦
 + 𝑂(∆𝑦).

Then by above equation, we get:

 [ε ∆𝑥2 – 𝑏𝑖𝑗∆𝑥
2 ∆𝑦] 𝑈𝑖,𝑗−1 + [ε ∆𝑦

2 – 𝑎𝑖𝑗 ∆𝑥∆𝑦
2] 𝑈𝑖−1,𝑗 + [-2ε ∆𝑦2 - 2ε ∆𝑥2 + + 𝑎𝑖𝑗∆𝑥∆𝑦

2

+ 𝑏𝑖𝑗∆𝑥
2∆𝑦] 𝑈𝑖,𝑗 + [ε ∆𝑦

2] 𝑈𝑖+1,𝑗 + [[ε ∆𝑥
2] 𝑈𝑖,𝑗+1 = 𝑓𝑖𝑗 ∆𝑥

2 ∆𝑦2,

where,

 aij = 1 + xi
2, bij = X e−yj

Furthermore, for centered Scheme:

∂u

∂x
]i,j =

Ui+1,j−Ui−1,j

2∆x
 + O(∆x)

∂u

∂x
]i,j =

Ui,j+1−Ui,j−1

2∆y
 + O(∆y)

So we obtain,

 [ε ∆x2 – 0.50bij∆x
2 ∆y] Ui,j−1 + [ε ∆y

2 – 0.50aij ∆x∆y
2] Ui−1,j + [-2ε ∆y 2 - 2ε ∆x2]

Ui,j + [ε ∆y
2 + 0.50aij ∆x∆y

2] Ui+1,j + [[ε ∆x
2+ 0.50bij∆x

2 ∆y] Ui,j+1 = fij ∆x
2 ∆y 2.

Now, we present the results:

10

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

If we choose ε 4 , X Y 4 ,= = = Tolerance=1e-20 and number of mesh size on both direction=20. Then

with FIM 5-step with k=-3.7, we have:

For dirichlet boundary condition

Figs. 1-2, show the numerical solution of the mentioned equation with two types of discretization

schemes.

Figs. 3-4, show the error plot for the solution of this problem by FIM and two types of discretization

schemes.

For neumann boundary condition

Figs. 5-6, show the numerical solution of the mentioned equation with two types of discretization

schemes.

Fig. 1. Solution with upwind (hybrid) scheme.

Fig. 2. Solution with centered scheme.

Fig. 3. Error plot with upwind (hybrid) scheme.

Fig. 4. Error plot with centered scheme.

11

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

Figs. 7-8, show the error plot for the solution of this problem by FIM and two types of discretization

schemes.

In Table 1 , the convergence behaviors of the FIM and a good non-stationary preconditioned method called

ILU preconditioned BiCGSTAB method (Pre- BiCGSTAB) are compared by CPU time, number of

iterations (Iter) and the maximum error.

Table 1. Comparison of the results between two different iterative methods.

Fig. 5. Solution with upwind (hybrid) schem.

Fig. 6. Solution with centered scheme.

Fig. 7. Solution with centered scheme.

Fig. 8. Solution with centered scheme.

 Dirichlet Boundary Condition Neumann Boundary Condition

Hybrid Scheme Centered
Scheme

Hybrid Scheme Centered Scheme

Iter

FIM 23 24 128 136

Pre-
BiCGSTAB

35 39 47 55

Maximum
Error

 FIM 0.0073 1.1829e-04 0.0113 0.1252

Pre-
BiCGSTAB

0.0073 1.1404e-04 0.0110 0.1256

CPU time FIM 0.1643

0.1688 0.0118 0.3668

Pre-
BiCGSTAB

2.9106 3.2193 3.8977 4.5627

12

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

From the result we can see that:

I. As mentioned in the above table, iteration required for the Neumann case is more as compared to its

Dirichlet counterpart.

II. For the Dirichlet boundary condition, the number of iteration and CPU time for the hybrid scheme is

less than Centered scheme. However, the maximum error for the centered scheme is less.

III. For the Neumann condition, the number of iterations, maximum error and CPU time for the hybrid

scheme is less than centered scheme.

IV. FIM method is superior to the ILU preconditioned BiCGSTAB method.

V. For low value of epsilon, both methods don’t work. The matrix may be become ill-conditioned. To

show the convergence behaviors of these methods, here we test the problem with different parameters

of ε for Dirichlet boundary condition.

Table 2. Results by both methods for epsilon=0.0001.

ε=0.0001 Hybrid Scheme Centered Scheme

FIM

Iter =2, Cpu time = 0.6075
Maximum_Error = 0.0406

 Solution oscillates and
 does not converge after
 1000 iteration

Pre-
BiCGSTAB

Iter =30, Cpu time =2.6066
Maximum_Error =0.0406

 Solution oscillates and
 does not converge after
 1000 iteration

13

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

Table 3. Results by the FIM method for epsilon=0.001.

Table 4. Results by the Pre-BiCGSTAB method for epsilon=0.001.

Table 5. Results by both methods for epsilon=0.1.

ε=0.01 Hybrid Scheme Centered Scheme

FIM

Iter =5, Cpu time = 0.13817
Maximum_Error = 0.04148

 Solution oscillates and does not
 converge after 1000 iteration

ε=0.01 Hybrid Scheme Centered Scheme

Pre-
BiCGSTAB

Iter =29, Cpu time = 2.47187
Maximum_Error = 0.041448

 Solution oscillates and does not
 converge after 1000 iteration

ε=0.1 Hybrid Scheme Centered Scheme

FIM

Solution oscillates and does not
 converge

Solution oscillates and does not
 converge

14

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

Table 6. Results by FIM method for epsilon=1.

Pre-
BiCGSTAB

Solution oscillates and does not
 converge

Iter =91, Cpu time = 7.636989
Maximum_Error = 0.0018694

ε=1 Hybrid Scheme Centered Scheme

Error Plot

Residual
Reduction
Plot

Solution oscillates and does not
 converge

Iter =19, Cpu time = 1.653104

Maximum_Error = 4.57593229e-04

15

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

Table 7. Error plot of the Pre-BiCGSTAB method for epsilon=1.

Table 8. Residual plot of the Pre-BiCGSTAB method for epsilon=1.

Table 9. Results by the FIM method for epsilon=2.

ε=1 Hybrid Scheme Centered Scheme

Error
Plot

Iter =228, Cpu time= 18.9332
Maximum_Error= 0.0235

Iter =19, Cpu time= 1.6502
Maximum_Error= 4.5759e-04

ε=1 Hybrid Scheme Centered Scheme

Residual
Reduction
Plot

ε=1 Hybrid Scheme Centered Scheme

Error Plot

Residual
Reduction
Plot

Iter =93, Cpu time = 0.301401397
Maximum_Error = 0.0129400359

Iter =18, Cpu time = 0.1635525769
Maximum_Error = 2.398448563e-04

16

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

Table 10. Results by the Pre-BiCGSTAB method for epsilon=2.

By above results we can conclude that:

I. In both methods, for the large value of ε, the convergence of the solution is much more ensured.

The error is less for large ε. The stiffness matrix is well conditioned for large values of ε. The stiffness

matrix is much more diagonally dominant for the case of higher values of epsilon.

II. In both methods, for very low values of ε, the centered scheme does not converge. In general, the

hybrid scheme converged with very less iteration and the centered scheme converged but with large

number of iteration and with high oscillation before convergence.

ε=2 Hybrid Scheme Centered Scheme

Error Plot

Residual
Reduction
Plot

Iter =32, Cpu time = 2.72658957
Maximum_Error = 0.0128128

Iter =28, Cpu time = 2.35891506
Maximum_Error = 2.82797714639e-04

17

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

III. Convergence area of the ILU preconditioned BiCGSTAB method is superior to the FIM method.

However, the speed of convergence of the FIM is the best.

IV. In both methods, for 𝜀 ∈ (.01, 0.9), the hybrid scheme does not converge. However, the centered

scheme converged.

V. For higher value of ε, both the scheme converges. However, the error in case of centered scheme is

much less as compared to the hybrid scheme.

Next, byε 4 , X Y 4 ,= = = Tolerance=1e-20 and number of mesh size on both direction=20, we show

the residual reduction plots for some iterative methods and hybrid discritization scheme (see Tables 11-14).

Table 11. Residual plot of the ILU method [12].

Table 12. Residual plot of the BiCGSTAB method.

Method Dirichlet Neumann

IL
U

Method Dirichlet Neumann

 N

o
-P

re
co

n
d
it

io
n

ed

B

iC
G

S
T

A
B

I

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18
x 10

304

No of Iteration

R
e
s
id

u
e

Residual Reduction Plot

0 20 40 60 80 100 120 140
0

1

2

3

4

5

6

7

8

9

10
x 10

303

No of Iteration

R
e
s
id

u
e

Residual Reduction Plot

18

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

Table 13. Residual plot of the Pre-BiCGSTAB method.

Table 14. Residual plot of the FIM method with k=-5.5.

Method Dirichlet Neumann

 F

IM
_
7
-s

te
p

I

Next, we compare the methods based on amplification factor plot (flow parameter is same as before).

The amplification factor is computed as:

k 1

k

r

r

+

, where the index k denotes the number of iterations.

The amplification factor is expected to converge to a value less than 1(see Tables 15-18).

Method Dirichlet Neumann

 P

re
-B

iC
G

S
T

A
B

I

19

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

Table 12. Amplification factor plot of the ILU method [12].

Table 13. Amplification factor plot of the BiCGSTAB method.

Table 17. Amplification factor plot of the Pre-BiCGSTAB method.

Method Dirichlet Neumann

IL
U

 IL
U

Method Dirichlet Neumann

 N

o
-P

re
co

n
d

it
io

n
ed

B
iC

G
S

T
A

B

I

Method Dirichlet Neumann

 P

re
-B

iC
G

S
T

A
B

I

0 50 100 150 200 250 300

10.9

10.95

11

11.05

11.1

11.15

11.2

No of Iteration

R
a
ti
o
 o

f
N

o
rm

 o
f

R
e
s
id

u
e
(A

m
p
lif

ic
a
ti
o
n
 F

a
c
to

r)

Amplification Factor Plot

0 20 40 60 80 100 120 140
376.6

376.8

377

377.2

377.4

377.6

377.8

378

378.2

378.4

No of Iteration

R
a
ti
o
 o

f
N

o
rm

 o
f

R
e
s
id

u
e
(A

m
p
lif

ic
a
ti
o
n
 F

a
c
to

r)

Amplification Factor Plot

20

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

Table 18. Amplification factor plot of the FIM method with k=-5.5.

Table 19, shows a total comparision between two models.

Table 14. Brief statistics.

Method Dirichlet Neumann

 F

IM
_
7
-s

te
p

I

Fig. 1.CPU time for non-preconditioned BiCGSTAB

(Hybrid scheme).

Fig. 2 .CPU time for preconditioned BiCGSTAB

(Hybrid scheme).

 ILU[7]

BiCGSTAB Pre-BiCGSATB FIM_5-step(K=-3.7)

No. of
Iteration
Required

Dirichlet

NC 91 35 23

Neumann

NC 118
(with cpu time=
7.5998)

47
(with cpu
time=3.8977)

128
(with cpu time=0.0118)

Maximum
Error

Dirichlet

NC 0.0073 0.0073 0.0073

Neumann

NC 0.0110 0.0110 0.0113

21

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

In all of above results the number of mesh size on both direction is 20. Here, we study the results based

on different number of mesh size. In Figs. 9-12 we show CPU time of different methods with different cell

number for hybrid discritization scheme and Dirichlet boundary condition. In Figs. 13-16 we show CPU

time of different methods with different cell number for centered discritization scheme and Dirichlet

boundary condition.

 Fig. 3. CPU time for FIM_5-step (Hybrid scheme).

Fig. 4. CPU time for FIM_7 step(k=-5.5) (Hybrid

scheme).

 Fig. 5.CPU time for non-preconditioned

BiCGSTAB (Centered scheme).

Fig. 6 .CPU time for preconditioned BiCGSTAB

(Centered scheme).

22

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

From that above figures we an see that:

I. The time required for case of FIM_7-step is less as compared to all other cases.

II. The maximum time required is for the case of BiCGSTAB.

III. Preconditioned BiCGSTAB takes less time as compared to the No preconditioned BiCGSTAB.

IV. FIM_7-step takes less time as compared to the FIM_5step.

V. Generally, hybrid discritization scheme takes less time as compared to the centered discritization scheme.

4 | Conclusion

In this paper, we investigated the comparsion of two iterative methods for solving the elliptic partial

differential equations. Our expriments can be explained as follow:

I. Among all the methods discussed, FIM method plays well as per as CPU time and convergence and

other features are considered.

II. Large number of cells gives better result. But it takes more time to converge.

III. Preconditioned used also plays nice role in the CPU time consumption and the converges of the

solution is considered.

IV. The value of ε plays a crucial role as depending on the ε, the contribution of the diffusion term will

determine.

Acknowledgments

The author is most grateful to the anonymous referees for the very constructive criticism on a previous

version of this work which significantly improved the quality of the present paper.

Funding

No funding applied for this paper.

Fig. 7. CPU time for FIM_5-step (k=-3.7) (Centered

scheme).

 Fig. 8. CPU time for FIM_7 step(k=-5.5) (Centered

scheme).

23

A
n

 e
x

p
e
ri

m
e
n

ta
l

c
o

m
p

a
ri

so
n

 o
f

tw
o

 p
re

c
o

n
d

it
io

n
e
d

 i
te

ra
ti

ve
 m

e
th

o
d

s
to

 s
o

lv
e
 t

h
e
 e

ll
ip

ti
c
 p

a
rt

ia
l

d
if

fe
re

n
ti

a
l

e
q

u
a
ti

o
n

s

Conflicts of Interest

All co-authors have seen and agree with the contents of the manuscript and there is no financial interest

to report. We certify that the submission is original work and is not under review at any other publication.

References

 Paige, C. C., & Saunders, M. A. (1975). Solution of sparse indefinite systems of linear equations. SIAM

journal on numerical analysis, 12(4), 617-629.

 Björck, Å. (1996). Numerical methods for least squares problems. Society for Industrial and Applied

Mathematics.

 Wang, P., Gao, Y., Yu, N., Ren, W., Lian, J., & Wu, D. (2022). Distributed and communication-efficient

solutions to linear equations with special sparse structure. Systems & control letters, 160, 105065.

 Edalatpanah, S. A. (2020). Systems of neutrosophic linear equations. Neutrosophic sets and systems, 33(1),

92-104.

 Axelsson, O. (1996). Iterative solution methods. Cambridge university press.

 Varga, R. S. (1962). Iterative analysis. Berlin: Springer.

 Young, D. M. (2014). Iterative solution of large linear systems. Elsevier.

 Hadjidimos, A. (1978). Accelerated overrelaxation method. Mathematics of computation, 32(141), 149-

157.

 Saberi Najafi, H., & Edalatpanah, S. A. (2011). Fast iterative method-FIM. Application to the

convection–diffusion equation. Journal of information and computing science, 6(4), 303-313.

 Argyros, I. K., & Szidarovszky, F. (2018). The theory and applications of iteration methods. CRC Press.

 Concus, P., & Golub, G. H. (1976). A generalized conjugate gradient method for nonsymmetric

systems of linear equations. In Computing methods in applied sciences and engineering (pp. 56-65).

Springer, Berlin, Heidelberg.

 Saad, Y. (2003). Iterative methods for sparse linear systems. Society for Industrial and Applied

Mathematics.

 Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., ... & Van der Vorst, H.

(1994). Templates for the solution of linear systems: building blocks for iterative methods. Society for Industrial

and Applied Mathematics.

 Saad, Y., & Schultz, M. H. (1986). GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3), 856-869.

 Freund, R. W., & Nachtigal, N. M. (1994). An implementation of the QMR method based on coupled

two-term recurrences. SIAM Journal on scientific computing, 15(2), 313-337.

 Sonneveld, P. (1989). CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM journal

on scientific and statistical computing, 10(1), 36-52.

 Starke. G., Alternating direction implicit preconditioning for nonsymmetric systems of linear

equations, SIAM J. Sci. Statist. Comput.,15(1994) 369–384.

 Meyer, P. D., Valocchi, A. J., Ashby, S. F., & Saylor, P. E. (1989). A numerical investigation of the

conjugate gradient method as applied to three‐dimensional groundwater flow problems in randomly

heterogeneous porous media. Water resources research, 25(6), 1440-1446.

 Pini, G., & Gambolati, G. (1990). Is a simple diagonal scaling the best preconditioner for conjugate

gradients on supercomputers? Advances in water resources, 13(3), 147-153.

 Bruaset, A. M. (2018). A survey of preconditioned iterative methods. Routledge.

 Sundar, S., & Bhagavan, B. K. (1999). Comparison of Krylov subspace methods with preconditioning

techniques for solving boundary value problems. Computers & mathematics with applications, 38(11-12),

197-206.

 Van der Vorst, H. A. (2003). Iterative Krylov methods for large linear systems (No. 13). Cambridge

University Press.

 Meijerink, J. A., & Van Der Vorst, H. A. (1977). An iterative solution method for linear systems of which

the coefficient matrix is a symmetric 𝑀-matrix. Mathematics of computation, 31(137), 148-162.

24

E
d

a
la

tp
a
n

a
h

|

C
o

m
.

A
lg

.
N

u
m

.
D

im
.

1(
1)

 (
2
0
2
2
)

1-
2
4

 Peaceman, D. W., & Rachford, Jr, H. H. (1955). The numerical solution of parabolic and elliptic

differential equations. Journal of the society for industrial and applied mathematics, 3(1), 28-41.

 Starke, G. (1994). Alternating direction preconditioning for nonsymmetric systems of linear

equations. SIAM journal on scientific computing, 15(2), 369-384.

 Milaszewicz, J. P. (1987). Improving jacobi and gauss-seidel iterations. Linear algebra and its

applications, 93, 161-170.

 Gunawardena, A. D., Jain, S. K., & Snyder, L. (1991). Modified iterative methods for consistent linear

systems. Linear algebra and its applications, 154, 123-143.

 Kohno, T., Kotakemori, H., Niki, H., & Usui, M. (1997). Improving the modified gauss-seidel method

for Z-matrices. Linear algebra and its applications, 267, 113-123.

 Usui, M., Niki, H., & Kohno, T. (1994). Adaptive gauss-seidel method for linear systems. International

journal of computer mathematics, 51(1-2), 119-125.

 Kotakemori, H., Harada, K., Morimoto, M., & Niki, H. (2002). A comparison theorem for the iterative

method with the preconditioner (I+ Smax). Journal of computational and applied mathematics, 145(2), 373-

378.

 Hirano, H., & Niki, H. (2001). Application of a preconditioning iterative method to the computation

of fluid flow. Numerical functional analysis and optimization, 22(3-4), 405-417.

 Hadjidimos, A., Noutsos, D., & Tzoumas, M. (2003). More on modifications and improvements of

classical iterative schemes for M-matrices. Linear algebra and its applications, 364, 253-279.

 Wang, L., & Song, Y. (2009). Preconditioned AOR iterative methods for M-matrices. Journal of

computational and applied mathematics, 226(1), 114-124.

 Saberi Najafi. H., & Edalatpanad. S. A. (2012). New model for preconditioning techniques with

application to the boundary value problems. Journal of advanced research in computer engineering: an

international journal, 6(2), 107-114.

 Wu, M., Wang, L., & Song, Y. (2007). Preconditioned AOR iterative method for linear systems. Applied

numerical mathematics, 57(5-7), 672-685.

 Yuan, J. Y., & Zontini, D. D. (2012). Comparison theorems of preconditioned Gauss–Seidel methods

for M-matrices. Applied mathematics and computation, 219(4), 1947-1957.

 Saberi Najafi, H., & Edalatpanah, S. A. (2013). Comparison analysis for improving preconditioned

SOR-type iterative method. Numerical analysis and applications, 6(1), 62-70.

 Najafi, H. S., & Edalatpanah, S. A. (2013). A collection of new preconditioners for solving linear

systems. Scientific research and essays, 8(31), 1522-1531.

 Saberi Najafi, H., Edalatpanah, S. A., & Refahisheikhani, A. H. (2018). An analytical method as a

preconditioning modeling for systems of linear equations. Computational and applied mathematics, 37(2),

922-931.

 Tian, Z., Li, X., Dong, Y., & Liu, Z. (2021). Some relaxed iteration methods for solving matrix equation

AXB= C. Applied mathematics and computation, 403, 126189.

 Liu, Z., Li, Z., Ferreira, C., & Zhang, Y. (2020). Stationary splitting iterative methods for the matrix

equation AXB= C. Applied mathematics and computation, 378, 125195.

 Cui, L. B., Zhang, X. Q., & Wu, S. L. (2020). A new preconditioner of the tensor splitting iterative

method for solving multi-linear systems with M-tensors. Computational and applied mathematics, 39(3),

1-16.

 Edalatpanah, S. A. (2020). On the preconditioned projective iterative methods for the linear

complementarity problems. RAIRO-operations research, 54(2), 341-349.

 Mao, X., Wang, X., Edalatpanah, S. A., & Fallah, M. (2019). The monomial preconditioned SSOR

method for linear complementarity problem. IEEE Access, 7, 73649-73655.

