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Abstract 

   

1 | Introduction  

Solving of system of linear equations (SLE) often occur in a wide variety of area, including numerical 

differential equations, eigenvalue problems, economics models, design and computer analysis of 

circuits, power system networks, chemical engineering processes, physical and biological sciences [1]-

[4]. Such systems are typically solved by two different types of methods; iterative methods and direct 

methods. The nature of the problem at hand determines which method is more suitable.  

A direct method for solving large sparse linear systems of the form of Ax=b involves explicit 

factorization of the coefficient matrix A into the product of two certain matrices such as triangular 

matrices [5], [6]. This is a highly time and memory consuming step; nevertheless, direct methods are 

important because of their generality and robustness. For linear systems arising in certain applications, 

they are the only feasible solution methods.  
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Furthermore, direct methods provide an effective means for solving multiple systems with the same 

coefficient matrix and different right-hand side vectors because the factorizations need to be performed 

only ones. The trouble with sparse direct methods is that, because fill-in, their memory requirement 

grows faster than the size of the problems [7].  

 Iterative methods are generally much simpler to describe in details than direct methods, because the 

lack of fill-in and simple matrix access remove the need for sophisticated data structures and graph 

theoretic analysis. On the other hand, the numerical behavior of iterative methods is much more 

complicated than that of direct methods [7]-[10].   

 To sum up, in sparse iterative methods, the spectral properties of the coefficient matrix determine the 

effectiveness of the method. Therefore, it is a challenge to make them robust enough to serve in portable 

libraries and environment used for a wide variety of problem domains. In this paper we apply two 

preconditioned iterative method for solving PDE problems and also compare these two kinds of 

strategys. 

2 | Iterative Methods for Systems of Linear Equations 

Consider system of linear equations as 

 

 

A system of nonlinear equations, given in fixed point form 

 

 

can be solved by choosing an initial approximation 𝑥(0) ∈ ℝ𝑛 and by successively calculating more 

accurate approximations using the iteration: 

 

 Stationary iterative methods for the Eq. (1) have the basic form 

 

  

Where 𝐵 ∈ ℝ𝑛×𝑛 and 𝑐 ∈ ℝ𝑛do not depend on 𝑘 . Initially, however, the linear system Eq. (1) must be 

transformed into a form to which the iterative method is applicable. For instance, the coefficient matrix 

can be written as: 

 

where 𝐷 = 𝑑𝑖𝑎𝑔(𝑎11, … , 𝑎𝑛𝑛), 𝐿 is a strictly lower triangular matrix and 𝑈 is the respective upper triangular 

part of 𝐴. For any splitting, A=M-N, where M is nonsingular, the iterative method for solving linear 

systems of Eq. (1) is  

                                                        

This iterative process converges to the unique solution 1x A b−=  for initial vector value 0 nx R  if and 

only if the spectral radius 1ρ( M N ) 1−   , where 1T M N−=   is called the iteration matrix.  

Here, we introduce some stationary iterative methods, shortly.  

Ax = b, (1) 

x = T(x), (2) 

x (k) = T(x (k−1)),   k = 1,2,3,…. (3) 

x (k) = Bx (k−1) + c,   k = 1,2,3,…, (3) 

A = D − L −U, (4) 

𝑥(𝑘) = 𝑀−1𝑁𝑥(𝑘−1) +𝑀−1𝑏,   𝑘 = 1,2,3,…, (5) 
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2.1| Stationary Iterative Methods for SLE 

The Jacobi method ([5], [6]) 

 For this method M=D and N=M-A. A single iteration step of the Jacobi method corresponds to the local 

solution of the linear system for a single variable. The resulting method is easy to implement, but often 

converges very slowly. 

The Gauss-Seidel method ([5], [6)] 

 this is like the Jacobi method, except that it uses updated approximations as soon as they are available. In 

general, it will converge faster than the Jacobi method. For this method we have: M=D-L. 

The SOR method ([5]-[7]) 

This can be derived from the Gauss-Seidel method by introducing an extrapolation parameter 𝑤. For the 

optimal choice of 𝑤, the convergence speed can be increased substantially. The SOR method is defined by 

𝑀 =
1

w
(𝐷 − 𝑤𝐿) And  𝑁 =

1

w
((1 − 𝑤)𝐷 + 𝑤𝑈). 

 So, we have 
1

SOR
T ( D wL) [( 1 w )D wU ].−= − − +  

The SSOR method ([7]) 

Each iteration step of the Symmetric SOR (SSOR) method consists of two semi-iterations the first of 

which is a usual (forward) SOR iteration followed by a backward SOR iteration, namely an SOR where the 

roles of L and U have been interchanged. 

The AOR method ([8]) 

This method uses two parameters r (called relaxation parameter) and w (called extrapolation parameter). 

The AOR method is defined by 𝑀 =
1

w
(𝐷 − 𝑟𝐿) and 𝑁 =

1

w
((1 − 𝑤)𝐷 + (𝑤 − 𝑟)𝐿) + 𝑤𝑈). So, we have: 

   1

AOR
T ( D rL) [( 1 w )D (w r )L wU ].−= − − + − +  

The FIM method ([9]) 

Each iteration step of the FIM consists of n semi-iterations as follows: 

     

+ +
−

+ + +
−

− − −
+ + +

−

− −
+ +

+ − +




= + +

 = + +



 = + +



= + + − + 


1 1
(i ) (i )

1 (i)n n
D

2 2 1
(i ) (i ) (i )

1n n n
D

n 1 n 1 n 2
(i ) (i ) (i )

1n n n
D

n 1 n 2
(i ) (i )

(i 1) 1 (i 1) n n
D

X [b LX UX ],

x [b Lx Ux ],

x [b Lx Ux ],

x [b Lx U{(1 w)x wx } .w R
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2.2| Non-Stationary Iterative Methods 

Non-stationary iterative methods differ from stationary methods in that the computations involve 

information that changes at each iteration step. This continuously updated information consists primarily 

of inner products of residuals or other vectors arising from the method. The best known non-stationary 

iterative methods for solving linear systems are: 

The Conjugate Gradient method (CG) generates a sequence of conjugate vectors which are the residuals 

of iterates. These vectors are also the gradients of a quadratic functional, the minimization of which is 

equivalent to the solution of the linear systems. The CG method is extremely effective when the 

coefficient matrix is symmetric and positive definite [11], [12]. 

The MINRES method and the SYMMLQ method are alternatives to the CG method which are used if 

the coefficient matrix is symmetric but possibly indefinite. The SYMMLQ method generates the same 

solutions as the CG method if the coefficient matrix is symmetric and positive definite [5], [14]. 

The CGNE method and the CGNR method are specific CG methods for problems with non-symmetric 

and non-singular coefficient matrices. These methods are based on the fact that the T TA A, AA  and 

TAA are always symmetric and positive definite. The CGNE method solves the system TAA Y b= for 

any y and then computes the solution Tx A Y= . The CGNR method solves T( A A)x b=  for x where 

Tb A b=  . The convergence of these methods may be slow since the spectrum of T TA A, AA  and 

TAA will be less favor able than the spectrum of A [5], [13]. 

The GMRES method computes a sequence of orthogonal vectors (as in the MINRES method), and 

combines them using a least-squares solve and update. However, unlike the MINRES method, it 

requires storing the whole sequence, so a large amount of storage is needed. This method is useful for 

general non-symmetric matrices [12], [14]. 

The BiCG method generates two sequences of vectors: one based on a system with the original matrix 

A and one 𝐴𝑇, which are made mutually orthogonal, or bi-orthogonal. The BiCG method is useful when 

the matrix is non-symmetric and non-singular [12], [13], [15]. 

The QMR method applies a least-squares solve and update to the BICG residuals, thereby smoothing 

out the irregular convergence behavior of the BICG method. It also largely avoids the breakdowns that 

can occur in the BICG method [13], [15]. 

The CGS method is a variant of the BICG method that applies the updating operations of both 

sequences to the same vectors. An advantage is that this method does not need the multiplications by 

𝐴𝑇 , but on the other hand convergence may be much more irregular than for the BICG method [13], 

[14], [16]. 

The BiCGSTAB method is a variant of the BICG method, like the CGS method. The difference is that 

the BiCGSTAB method uses different updates for the sequence corresponding to 𝐴𝑇 in order to obtain 

smoother convergence than the CGS method [13], [14], [17]. 
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3 | Preconditioning Methods for Systems of Linear Equations 

 

A matrix P is called a preconditioner if the matrix P enables a transformation of the linear system into an 

equivalent system (with the same solution) which has more favorable spectral properties. For Eq. (1) 

preconditioning, transforms the system to 

  Furthermore, it can be transformed to  

where P and F are linear operators, called left and right preconditioners respectively. And for example, for 

stationary iterative methods we have:  

         
+ − −= + =(i 1) 1 (i) 1

p p p
x M N x M Pb, i 0, 1, .  

 where PA=MP-NP  and MP  is nonsingular.  

 Also 

         
+ − −= + =(i 1) 1 (i) 1

F F F
y M N y M b, i 0, 1,..  

 where AF=MF-NF  and  MF  is nonsingular.  

The majority of preconditioners fall in the first category; i.e. Eq. (6).  

The purpose of preconditioning is to change the matrix of the system, in order to accelerate the 

convergence of iterative solvers.  

We note that applying a preconditioner involves extra cost and most preconditioners involve an amount 

of computational work proportional to the number n of variables in their application. They thus multiply 

the amount of computational work per iteration by a constant factor. On the other hand, the number of 

iterations is usually only improved by a constant, i.e., the saving in computational works is independent of 

the matrix size. Therefore, there is a trade-off between the cost of constructing and applying the 

preconditioner and the gain of increased convergence speed. 

To improve the convergence rate of a basic iterative method, various models of preconditioning systems 

have been proposed. Here, we introduce some models of preconditioning, shortly.  

Jacobi Preconditioning ([18],[19]) 

 The Jacobi or point-preconditioner consists of just the diagonal of the matrix A: 

P ≔ diag( a11, a22, … , ann). 

Theoretically, there is no need for any extra storage, but in practice storage is allocated for the reciprocals 

of the diagonal elements in order to avoid repeated (un-necessary) division operations. 

If the index set J:={1,…,n}is partitioned into disjoint subsets  𝐽𝑖, a block version can derived: 

=  n nPAx Pb, P R .  (6) 

= =AFy b, x Fy,  (7) 
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pij = {
aij,        if  i,j ∈Jk
0,                  else.

 

The preconditioner is now a block-diagonal matrix; this is the Jacobi block-preconditioning. 

Jacobi preconditioners need very little storage, and they are easy to implement, even on parallel 

computers. On the other hand, more sophisticated preconditioners usually yield much better 

improvements in the rate of convergence. 

 

SSOR preconditioning ([5], [20]) 

 If the symmetric matrix A is decomposed as 𝐴 = 𝐷 + 𝐿 + 𝐿𝑇 , then the SSOR matrix is defined as: 

P ≔ (D + L)D−1(D + L)T, 

or, parameterized by 𝜔, 

𝑃𝜔 ≔
1

2 − 𝜔
(
1

𝜔
𝐷 + 𝐿) (

1

𝜔
𝐷)

−1

(
1

𝜔
𝐷 + 𝐿)

𝑇

. 

Using the optimal value of the relaxation factor 𝜔 reduces the number of iterations, but in practice, this 

optimal value is prohibitively expensive to compute. As 𝑃 is given in factored form, this method shares 

many of the properties of preconditioning methods based on incomplete factorizations. Since the 

factorization of the SSOR preconditioner is given a priori, there is no danger of a breakdown in the 

construction phase. 

Note. Above preconditioners called also preconditioners based on relaxation technique. For example, if 

the preconditioner P be as P=D, then this preconditioner is called Jacobi. Also if  𝑃 =
1

w
(𝐷 − 𝑤𝐿) then 

we have SOR preconditioner where for w = 1, we have Gauss–Seidel preconditioner and so on.  

 

Incomplete factorization [13], [20]-[23] 

 

Originally, preconditioners were based on direct solution methods in which part of the computation in 

skipped. This leads to the notion of incomplete LU (or ILU) factorization. 

The construction of an incomplete factorization may break down (due to a division by zero pivot 

element). The existence of an incomplete factorization is guaranteed for many factorization strategies, if 

the original matrix A has certain properties [23], [24].   

An important consideration for incomplete factorization preconditioners is the cost of the factorization 

process. These costs bear fruit only if the iterative method without preconditioning converges very slowly, 

or if the same matrix P can be used for solving several linear systems, as can be done, for instance, in 

Newton’s method for large nonlinear systems with a sparse Jacobian matrix.  

 

ADI preconditioning 

In 1994, Starke proposed the use of the Alternating Direction Implicit (ADI) method [25] as a 

preconditioning technique for the Krylov subspace methods for non-symmetric linear systems. Let 𝐴 =

𝐴1 + 𝐴2,where 𝐴1and 𝐴2 are nonsingular. The alternative direction implicit method for solving the linear 

system Ax = b is in the following form: 

{  
 
   
 
 
(A 1 + r1I)ui+1

2

= b − (A 2 − r1I)ui,

(A 2 + r2I)ui+1 = b − (A 1 − r2I)ui+1
2

.
 

 

The ADI preconditioner is as  𝑃 ≔ (𝐴1 + 𝑟1𝐼)(𝐴2 + 𝑟2𝐼) . Parameters 𝑟1, 𝑟2 are acceleration parameters. 

Varga [6] and Young [7] presented the optimum value for 𝑟1, 𝑟2. 

preconditioners of (I+S)-type 

In the literature, various authors have suggested different models of (I+S)-type preconditioner for the 

above-mentioned problem. In 1987 Milaszewicz [26] presented the preconditioner (I+S'), where the 

elements of the first column below the diagonal of A eliminate.   Gunawardena, Jain and Snyder  

considered [27] a modification of Jacobi and Gauss-Seidel methods and reported in 1991 that the 
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convergence  rate of  Gauss–Seidel method using the following preconditioning matrix is superior to that 

of the standard Gauss–Seidel method .Where,   

          P=I+S.                                                                                 

And, 

        

− = + = −


= = 


i , j

i , j

a , for j i 1, i 1,2,..., n 1
S (s ) 0 , for otherwise.  

Kohno et al. [28] proposed an extended modification of Jacobi and Gauss-Seidel methods. Their 

preconditioner is ( α
I s+ ), where 

                                     

          



− = +  


= = 


i ij i

α ij n n

α a , j i 1 ,0 α 1
s (s ) 0 , otherwise.  

They also presented some numerical investigation for the choice of the optimal parameter. In [29] Usui  et 

al. proposed to adopt 

          P=I+U,(or  I+L),                                                                         

as the preconditioned matrix, where U (L) is strictly upper (strictly lower) triangular of matrix A. They 

obtained excellent convergence rate compared with that by other iterative methods. Kotakemori et al. in 

[30] used 

         = +
max

P I S ,                                                                               
 

 where Smax is 

          

− = − 


= = 


i
i ,V

m

max ij

a , for i 1,2,..., n 1, j i
S (s ) 0 , for otherwise,

 

and, 

          =  
i ijj

V min j j max a for i n.                                                                 

Harano and Niki [31] considered the preconditioner     

         = + + +P I (1 γ)(L U)  

where  is small positive number.  

Hadjidimos et al. [32] extended, generalized and compared the previous works. Wang and Song [33] 

presented a general form of the preconditioners for nonsingular M-matrices.

 

Saberi Najafi and Edalatpanah 

in [34] established 



 

 

8 

E
d

a
la

tp
a
n

a
h

|
 

C
o

m
. 

A
lg

. 
N

u
m

. 
D

im
. 

1(
1)

 (
2
0
2
2
) 

1-
2
4

 

 

            = +
min

P I S , ,                                       

where for  i 1 : n 1= −  and j i :  

            

 


= −


i

min
i, j

0 , if j Q ,
S a , for otherwise,

 

 

and, 

                       

 
 
 

=  =  − 
 
 

i i , j i ,kk
Q j j i & a min a for i n 1.  

Furthermore, some other researchers have considered different models in the literature [35]-[44].  

3 | Results 

In this section, we apply some iterative methods for solving elliptic PDE with Finite Differences Methods 

(FDM). Here, we establish our research about this topic. 

Consider the following elliptic PDE (advection-diffusion equation): 

        

( ) ( ) ( )
    

+ + + =      

2 2

2 2

u u u u
ε a x,y b x,y f x,y ,

x yx y

 

With the following bonditions; 

Dirichlet on x=0, y=0, either Neumann at y=Y and x=X or Dirichlet on y=Y and x=X,  

where

 

        

( ) ( ) −      = + =   
y2ε 0 ; x 0,X  and y 0,Y   a x,y 1 x  ; b x,y Xe ,

 
and, 

f(x,y) = ε ( 
𝑦

𝑋2 
𝑒
−
𝑥

𝑋 + 𝑒−(
𝑥

𝑋
+
𝑦

𝑌
)( 

2

𝑌
− 

𝑦

𝑌2
− 

𝑦

𝑋2
)) + + 𝑒−

𝑥

𝑋 (X𝑒−𝑦 − 
𝑦 ( 1+ 𝑥2)

𝑋
 )  +  𝑒

−(
𝑥

𝑋
+
𝑦

𝑌
)
 (
𝑦 ( 1+ 𝑥2)

𝑋
 - X𝑒−𝑦 +

𝑋

𝑌
𝑦 𝑒−𝑦) . 

This equation has the following analytical solution: 

          
( ) ( )−−= −

y/Yx/Xu x,y e 1 e y
 

Based on FDM, we solve the equation after the following differencing:
 

I. Central differencing. 

II. Upwind differencing. 
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To see the convergence behavior of above FDMs by two iterative methods, we select Saberi Najafi and 

Edalatpanah’s method (FIM [5]) as stationary iterative method and a good preconditioned nons-tationary 

iterative method called the preconditioned (Incomplete LU Decomposition) BiCGSTAB   method.  And 

finally, we show: 

− Plot the residual reduction. 

− Plot the error map. 

− Estimate the truncation error. 

− Plot the smoothing factor of the iteration. 

For the above problem, two types of discretization schemes (centered and hybrid) have been compared 

for the comparison of the solution.  

For both schemes, we choice:  

∂2u

∂x2
 ]i,j  = 

Ui+1,j − 2 Ui,j + Ui−1,j

∆x2
+  O(∆x2), 

∂2u

∂y2
 ]i,j  = 

Ui,j+1 − 2 Ui,j + Ui,j−1

∆y2
+  O(∆y 2). 

And for hybrid Scheme: 

𝜕𝑢

𝜕𝑥
 ]i,j  = 

𝑈𝑖,𝑗−𝑈𝑖−1,𝑗 

∆𝑥
 + 𝑂(∆𝑥), 

𝜕𝑢

𝜕𝑥
 ]i,j  = 

𝑈𝑖,𝑗−𝑈𝑖,𝑗−1 

∆𝑦
 + 𝑂(∆𝑦). 

Then by above equation, we get: 

 [ε ∆𝑥2 – 𝑏𝑖𝑗∆𝑥
2 ∆𝑦 ] 𝑈𝑖,𝑗−1 + [ ε ∆𝑦

2 – 𝑎𝑖𝑗 ∆𝑥∆𝑦
2 ] 𝑈𝑖−1,𝑗 + [ -2ε ∆𝑦2 - 2ε ∆𝑥2 + + 𝑎𝑖𝑗∆𝑥∆𝑦

2  

+ 𝑏𝑖𝑗∆𝑥
2∆𝑦 ] 𝑈𝑖,𝑗 + [ ε ∆𝑦

2 ] 𝑈𝑖+1,𝑗 + [[ ε ∆𝑥
2 ] 𝑈𝑖,𝑗+1 = 𝑓𝑖𝑗 ∆𝑥

2 ∆𝑦2, 

where, 

        aij = 1 + xi
2, bij = X e−yj  

Furthermore, for centered Scheme: 

∂u

∂x
 ]i,j  = 

Ui+1,j−Ui−1,j 

2∆x
 + O(∆x) 

∂u

∂x
 ]i,j  = 

Ui,j+1−Ui,j−1 

2∆y
 + O(∆y) 

So we obtain, 

 [ε ∆x2 – 0.50bij∆x
2 ∆y ] Ui,j−1 + [ ε ∆y

2 – 0.50aij ∆x∆y
2 ] Ui−1,j + [ -2ε ∆y 2 - 2ε ∆x2 ] 

Ui,j + [ ε ∆y
2 + 0.50aij ∆x∆y

2 ] Ui+1,j + [[ ε ∆x
2+ 0.50bij∆x

2 ∆y] Ui,j+1 = fij ∆x
2 ∆y 2. 

Now, we present the results: 
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If we choose ε 4 , X Y 4 ,= = = Tolerance=1e-20 and number of mesh size on both direction=20. Then 

with FIM 5-step with k=-3.7, we have:  

For dirichlet boundary condition 

Figs. 1-2, show the numerical solution of the mentioned equation with two types of discretization 

schemes.  

Figs. 3-4, show the error plot for the solution of this problem by FIM and two types of discretization 

schemes.  

 

For neumann boundary condition 

Figs. 5-6, show the numerical solution of the mentioned equation with two types of discretization 

schemes.  

 

 

 

 

 

Fig. 1. Solution with upwind (hybrid) scheme. 

 

 
         

Fig. 2. Solution with centered scheme. 

 

 

 

Fig. 3. Error plot with upwind (hybrid) scheme. 

 

 
         

Fig. 4. Error plot with centered scheme. 
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Figs. 7-8, show the error plot for the solution of this problem by FIM and two types of discretization 

schemes.  

 

In Table 1 , the convergence behaviors of the FIM and a good non-stationary preconditioned method called 

ILU preconditioned BiCGSTAB method (Pre- BiCGSTAB) are compared by CPU time, number of 

iterations (Iter) and the maximum error. 

Table 1. Comparison of the results between two different iterative methods. 

 

 

 

Fig. 5. Solution with upwind (hybrid) schem. 

 

 
         

 

Fig. 6. Solution with centered scheme. 

 

 

 

Fig. 7. Solution with centered scheme. 

 

 
         

Fig. 8. Solution with centered scheme. 

 

 Dirichlet Boundary Condition Neumann Boundary Condition 

Hybrid Scheme Centered 
Scheme 

Hybrid Scheme Centered Scheme 

 
Iter 

FIM 23 24 128 136 

Pre-
BiCGSTAB 
 

35 39 47 55 

Maximum 
Error 

      FIM 0.0073 1.1829e-04 0.0113 0.1252 

Pre-
BiCGSTAB 

0.0073 1.1404e-04 0.0110 0.1256 

CPU time  FIM 0.1643 
 

0.1688 0.0118 0.3668 

Pre-
BiCGSTAB 

2.9106 3.2193 3.8977 4.5627 
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From the result we can see that: 

I. As mentioned in the above table, iteration required for the Neumann case is more as compared to its 

Dirichlet counterpart. 

II. For the Dirichlet boundary condition, the number of iteration and CPU time for the hybrid scheme is 

less than Centered scheme. However, the maximum error for the centered scheme is less.  

III. For the Neumann condition, the number of iterations, maximum error and CPU time for the hybrid 

scheme is less than centered scheme.  

IV. FIM method is superior to the ILU preconditioned BiCGSTAB method. 

V. For low value of epsilon, both methods don’t work. The matrix may be become ill-conditioned. To 

show the convergence behaviors of these methods, here we test the problem with different parameters 

of ε for Dirichlet boundary condition. 

Table 2. Results by both methods for epsilon=0.0001. 

 

 

 

 

ε=0.0001                Hybrid Scheme           Centered Scheme 

 
 
 
 
 
FIM 

 

 
Iter =2, Cpu time = 0.6075 
Maximum_Error = 0.0406 

 

 
    Solution oscillates and   
    does not converge after  
    1000 iteration 

 

 
 
 
Pre-
BiCGSTAB 

 
 

 
Iter =30, Cpu time  =2.6066 
Maximum_Error =0.0406 

 

    
    Solution oscillates and   
    does not converge after  
    1000 iteration 
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Table 3. Results by the FIM method for epsilon=0.001. 

 

Table 4. Results by the Pre-BiCGSTAB method for epsilon=0.001. 

 

Table 5. Results by both methods for epsilon=0.1. 

 

 

 

ε=0.01                Hybrid Scheme           Centered Scheme 

 
 
 
 
 
FIM 

 

 
Iter =5, Cpu time = 0.13817 
Maximum_Error = 0.04148 

 

 
 
 
    Solution oscillates and does not    
     converge after 1000 iteration 

 

ε=0.01                Hybrid Scheme           Centered Scheme 

 
 
 
Pre-
BiCGSTAB 

 
 

 
Iter =29, Cpu time = 2.47187 
Maximum_Error = 0.041448 

 

     
   Solution oscillates and does not   
    converge after 1000 iteration 

 

ε=0.1                Hybrid Scheme           Centered Scheme 

 
FIM 

 
Solution oscillates and does not    
     converge  

 

 
Solution oscillates and does not    
     converge  
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Table 6. Results by FIM method for epsilon=1. 

 

 

 

 

 
 
 
Pre-
BiCGSTAB 

 
 

 
 
 
Solution oscillates and does not    
     converge  
 
 

 

    

 
Iter =91, Cpu time = 7.636989 
Maximum_Error = 0.0018694 

 

 

ε=1                Hybrid Scheme           Centered Scheme 

 
 
Error Plot 

 
 
 
 
 
 
 
 
 
 
 
 
Residual 
Reduction 
Plot 

 
 

 
 
Solution oscillates and does not    
     converge  
 
 
 

 
 
 
 
 
 
 
 
--------- 

     

 
Iter =19, Cpu time = 1.653104 

Maximum_Error = 4.57593229e-04 
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Table 7. Error plot of the Pre-BiCGSTAB method for epsilon=1. 

 

Table 8. Residual plot of the  Pre-BiCGSTAB method for epsilon=1. 

 

Table 9. Results by the FIM method for epsilon=2. 

 

ε=1                Hybrid Scheme           Centered Scheme 

 
 
 
Error 
Plot 

 
 
 
 
 
 
 
 

 
 

 
 
 

Iter =228, Cpu time= 18.9332 
Maximum_Error= 0.0235 

 

     
 
 

 
 

Iter =19, Cpu time= 1.6502 
Maximum_Error= 4.5759e-04 

 

ε=1                Hybrid Scheme           Centered Scheme 

 
 
 
 
Residual 
Reduction 
Plot 

 

 

 

     

 
 

 

ε=1                Hybrid Scheme           Centered Scheme 
 
 
Error Plot 

 
 
 
 
 
 
 
Residual 
Reduction 
Plot 

 
 

 
Iter =93, Cpu time = 0.301401397 
Maximum_Error = 0.0129400359 

     

 
 

Iter =18, Cpu time = 0.1635525769 
Maximum_Error = 2.398448563e-04 
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Table 10. Results by the Pre-BiCGSTAB method for epsilon=2. 

 

By above results we can conclude that: 

I. In both methods, for the large value of ε, the convergence of the solution is much more ensured.  

The error is less for large ε. The stiffness matrix is well conditioned for large values of ε. The stiffness 

matrix is much more diagonally dominant for the case of higher values of epsilon.  

II. In both methods, for very low values of ε, the centered scheme does not converge. In general, the 

hybrid scheme converged with very less iteration and the centered scheme converged but with large 

number of iteration and with high oscillation before convergence. 

 

 
 
 
 

 
 

 

 
 

     
 

 
 

 
 
 

 

ε=2                Hybrid Scheme           Centered Scheme 

 
 
 
Error Plot 

 
 
 
 
 
 
 
 
Residual 
Reduction 
Plot 

 

 
 

 
 

Iter =32, Cpu time  = 2.72658957 
Maximum_Error = 0.0128128 

 
 

     
 

 
 

Iter =28, Cpu time  = 2.35891506 
Maximum_Error = 2.82797714639e-04 
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III. Convergence area of the ILU preconditioned BiCGSTAB method is superior to the FIM method. 

However, the speed of convergence of the FIM is the best.  

IV. In both methods, for 𝜀 ∈ (.01, 0.9), the hybrid scheme does not converge. However, the centered 

scheme converged. 

V. For higher value of ε, both the scheme converges. However, the error in case of centered scheme is 

much less as compared to the hybrid scheme.  

Next, byε 4 , X Y 4 ,= = = Tolerance=1e-20 and number of mesh size on both direction=20, we show 

the residual reduction plots for some iterative methods and hybrid discritization scheme (see Tables 11-14). 

Table 11. Residual plot of the ILU method [12]. 

 

Table 12. Residual plot of the BiCGSTAB method. 

 

 

 

Method                 Dirichlet                    Neumann 

IL
U

 

 

 
 

 

     
 

 

Method                 Dirichlet                    Neumann 
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Table 13. Residual plot of the Pre-BiCGSTAB method. 

 

Table 14. Residual plot of the FIM method with k=-5.5. 

Method                 Dirichlet                    Neumann 

  
  
  
  
  
 F

IM
_
7
-s

te
p

 
I 

 

   

 
 

 

     
 

 

 

Next, we compare the methods based on amplification factor plot (flow parameter is same as before). 

The amplification factor is computed as:

k 1

k

r

r

+

, where the index k denotes the number of iterations. 

The amplification factor is expected to converge to a value less than 1(see Tables 15-18). 

 

 

 

 

Method                 Dirichlet                    Neumann 
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Table 12. Amplification factor plot of the ILU method [12]. 

 

Table 13. Amplification factor plot of the BiCGSTAB method. 

 

Table 17. Amplification factor plot of the Pre-BiCGSTAB method. 
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Table 18. Amplification factor plot of the FIM method with k=-5.5. 

Table 19, shows a total comparision between two models. 

Table 14. Brief statistics. 
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Fig. 1.CPU time for non-preconditioned BiCGSTAB 

(Hybrid scheme).            

 
                 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 .CPU time for preconditioned BiCGSTAB                                                

(Hybrid scheme). 

   ILU[7]  
 

BiCGSTAB Pre-BiCGSATB FIM_5-step(K=-3.7) 

No. of 
Iteration 
Required 

Dirichlet 
 

NC 91 35 23 

Neumann 
 

NC 118 
(with cpu time= 
7.5998) 

47 
(with cpu 
time=3.8977) 

128 
(with cpu time=0.0118) 

Maximum 
Error 
 
 

Dirichlet 
 

NC 0.0073 0.0073 0.0073 

Neumann 
 

NC 0.0110 0.0110 0.0113 
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In all of above results the number of mesh size on both direction is 20. Here, we study the results based 

on different number of mesh size. In Figs. 9-12 we show CPU time of different methods with different cell 

number for hybrid discritization scheme and Dirichlet boundary condition. In Figs. 13-16 we show CPU 

time of different methods with different cell number for centered discritization scheme and Dirichlet 

boundary condition. 

 

 

 

 

 
               

 
                 

         

 

 Fig. 3. CPU time for FIM_5-step (Hybrid scheme). 

 

Fig. 4. CPU time for FIM_7 step(k=-5.5) (Hybrid 

scheme). 

            

 

              Fig. 5.CPU time for non-preconditioned 

BiCGSTAB (Centered scheme). 

 

 
                 

                  

 

 

 

 

 

 

Fig. 6 .CPU time for preconditioned BiCGSTAB 

(Centered scheme). 
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From that above figures we an see that:  

I. The time required for case of FIM_7-step is less as compared to all other cases.  

II. The maximum time required is for the case of BiCGSTAB. 

III. Preconditioned BiCGSTAB takes less time as compared to the No preconditioned BiCGSTAB. 

IV. FIM_7-step takes less time as compared to the FIM_5step. 

V. Generally, hybrid discritization scheme takes less time as compared to the centered discritization scheme. 

4 | Conclusion 

In this paper, we investigated the comparsion of two iterative methods for solving the elliptic partial 

differential equations. Our expriments can be explained as follow: 

I. Among all the methods discussed, FIM method plays well as per as CPU time and convergence and 

other features are considered. 

II. Large number of cells gives better result. But it takes more time to converge. 

III. Preconditioned used also plays nice role in the CPU time consumption and the converges of the 

solution is considered. 

IV. The value of ε plays a crucial role as depending on the ε, the contribution of the diffusion term will 

determine. 
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Fig. 7. CPU time for FIM_5-step (k=-3.7) (Centered 

scheme). 

 

 
                      

                        

 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 8. CPU time for FIM_7 step(k=-5.5) (Centered 

scheme). 
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