Document Type : Original Article


1 Department of Industrial Engineering, Research Science Branch, Islamic Azad University, Tehran, Iran.

2 Department of Structural Mechanics and Analysis, Technische University Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.

3 Nenad Komazec, University of Defence in Belgrade, Belgrade, Serbia.


This study investigates how the current academic literature discusses Wireless Sensor Network (WSN) applications in agriculture. The WSN is widely used to build decision support systems to overcome many problems in the real world. Using the basic principles of Internet and WSN technology, precision agriculture systems based on the Internet of Things (IoT) technology are explained in detail, especially on the hardware architecture, network architecture, and software process control of the precision agriculture system. The software monitors data from the wireless sensors, but implementing a WSN will optimize the usage of water fertilizers and maximize crop yield. Nowadays, the climatic conditions are not the same and predictable. There are many ways to cultivate healthy crops in a year. But it requires a lot of human resources, which is a burden nowadays. We are designing a WSN  for smart agriculture to make it smart and straightforward and give correct input to the corp.


[1]     Kim, W. S., Won-Suk, L., & Kim, Y. J. (2020). A review of the applications of the internet of things (IoT) for agricultural automation. Journal of biosystems engineering 45, 385-400.
[2]     Xu, J., Baoxing, G., & Guangzhao, T. (2022). Review of agricultural IoT technology. Artificial intelligence in agriculture 6, 10-22.
[3]    Mini, A. D., Anuradha, M. A. S., Gupta, S. R. A., Jagdale, S. S. R., Santosh, K., & Manjusha, K. (2023). IoT based smart agriculture monitoring system." International research journal of engineering and technology 10(4), 1442-1448.
[4]    Saini, M. K., & Rakesh K. S. (2020). Agriculture monitoring and prediction using internet of things (IoT). 2020 Sixth international conference on parallel, distributed and grid computing (PDGC) (pp. 53-56). IEEE.
 [5]   Duguma, A. L., & Bai, X. (2024). Contribution of internet of things (IoT) in improving agricultural systems. International journal of environmental science and technology, 21(2), 2195-2208.
[6]    Mahalingam, N., & Priyanka, S. (2024). An intelligent blockchain technology for securing an IoT-based agriculture monitoring system. Multimedia tools and  applications, 83(4), 10297-10320.
[7]     Xiongzhe, H., Thomasson, J. A., Xiang, Y., Gharakhani, H., Yadav, P. K., & Rooney, W. L. (2019). Multifunctional ground control points with a wireless network for communication with a UAV. Sensors 19(13), 2852.
[8]     Muruganandam, C., & V. Maniraj. (2024). IoT based agriculture monitoring and prediction of paddy growth using enhanced conquer based transitive clustering. International journal of intelligent systems and applications in engineering, 12(17), 283-293.
[9]     Akilan, T., & Baalamurugan, K. M. (2024). Automated weather forecasting and field monitoring using GRU-CNN model along with IoT to support precision agriculture. Expert systems with applications, 294. 123468.
[10]    Taghvaei, F., & Safa, R. (2021). Efficient energy consumption in smart buildings using personalized NILM-based recommender system. Big data and computing visions, 1(3), 161-169.
[11]     Mohapatra, H., & Rath, A. K. (2020). Fault-tolerant mechanism for wireless sensor network. IET wireless sensor systems, 10(1), 23–30. https://ietresearch.onlinelibrary
 [12]     Mohapatra, H., & Rath, A. K. (2022). IoE based framework for smart agriculture. Journal of ambient intelligence and humanized computing, 13(1), 407–424.
[13]    Han, H., Liu, Z., Li, J., & Zeng, Z. (2024). Challenges in remote sensing based climate and crop monitoring: navigating the complexities using AI. Journal of cloud computing, 13(1), 1-34.
[14]     Varsha, A. S., Anuradha, K., Shantanu, K., & Supriya, S. P. (2024). State of art technology and framework for iot based agricultural systems. Migration letters, 21(5), 816-837.
[15]     Subhrajit, M.,  Anamika, Y.,  Florence, A. P., Kshetrimayum, M. D., & Shravan Kumar, S. M. (2024). Adaption of smart applications in agriculture to enhance production. Smart agricultural technology, 7, 100431.
[16]     Nozick, V. (2023). Smart home environment future challenges and issues. Computational algorithms and numerical dimensions, 2(1), 12-16.
 [17]    Zhou, Z. (2023). Soil quality based agricultural activity through iot and wireless sensor network. Big data and computing visions, (3)1, 26-31.
[18]     Agyan, P., Edalatpanah, S.A., & Godarzi Karim, R. (2021). Improve crop production through wsn: an approach of smart agriculture. Big data and computing visions, 1(2), 71-82.
[19]     Yousif, A., & Badria, A. (2022). Amplifying the yield of the harvests through wireless sensor network in smart agriculture. Big data and computing visions, 2(4), 138-142.
 [20]    Mohapatra, H., & Rath, A. K. (2020). Smart bike wheel lock for public parking. Computational algorithms and numerical dimensions, 1(3), 126-129.
[21]     Fang, J. (2022). Smart phone based monitoring of agricultural activities. Computational algorithms and numerical dimensions, 1(4), 159-163.
[22]     Xu, J., Baoxing, G., & Guangzhao, T. (2022). Review of agricultural IoT technology. Artificial Intelligence in Agriculture, 6, 10-22.
[23]     Lausch, A., Heurich, M., Magdon, P., Rocchini, D., Schulz, K., Bumberger, J., & King, D. J. (2020). A range of earth observation techniques for assessing plant diversity. Remote sensing of plant biodiversity.
 [24]    Garcia-Sanchez, A. J., Garcia-Sanchez, F., & Garcia-Haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and electronics in agriculture, 75(2), 288–303.