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Abstract 

   

1 | Introduction 

Accounting for reliability indicators has the potential to cut down operating costs significantly. 

Enhancements in reliability should be grounded in the accumulated operational experience of the 

National Assembly. Consequently, in 2008, TIIAME established a system for gathering and 

processing statistical data on the reliability of large NSs in operation and their components. The 

selection of information is intended to transition gradually from a passive state (as it currently exists) 

to an active state (as needed) [1]. The collection methodology is designed to concentrate relevant data 

in a format accessible to operational personnel. Analyzing these statistics enables the development of 

appropriate measures, leading to a substantial reduction in expensive research. The industry's focus 

on reliability is equally applicable to hydroelectric facilities. Notably, there has been an increased 

interest in recent times regarding the reliability of hydraulic structures. While there is a conservative 

approach to design using tried and tested methods, it should not impede the adoption of new 

techniques for analyzing reliability indicators, which include measures for technical diagnostics and 

maintainability [2]. 
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In recent times, there has been a surge of interest in the field of data mining across various domains. Data 

mining involves the process of uncovering valuable knowledge from extensive datasets. One of the primary 

tasks within data mining is addressing classification problems for diverse applications. These problems 

involve predicting categorical labels, which are the focal point of various domains, such as failure prediction 

in pumping stations [3]-[5]. To tackle classification tasks, previous experiences are initially gathered and 

represented. Subsequently, a predictive classifier is trained to describe the predefined set of data concepts. 

When faced with a new problem, the classifier can recommend corresponding solutions based on its 

training. Since the class label of each sample is required during the training process, data classification falls 

under the category of supervised learning. Evaluating the predictive accuracy of the classifier is often crucial 

when determining its applicability in a specific domain [6]-[11]. 

Several techniques can be employed in the data mining process. An effort was made by [12] to identify the 

top 10 data mining algorithms during the IEEE International Conference on Data Mining (ICDM) in 

December 2006. It involved inviting winners of the IEEE ICDM research contribution award and ACM 

KDD innovation award to nominate up to 10 algorithms in data mining. Each nomination was verified 

for citations on Google Scholar, and those with at least 50 citations were retained. The final top 10 

algorithms were determined through an open vote by all attendees of ICDM. Among these top algorithms, 

Support Vector Machine (SVM) [13], Classification And Regression Tree (CART), C4.5 [14], [15], K-

Nearest Neighbors (KNN) [16], and naïve Bayes [17] are commonly used techniques for classification 

mining. 

In recent years, numerous articles have been presented on the application of Machine Learning (ML) in 

predicting failures for water pump systems. Some of these studies delve into supervised methods [18]-[20], 

while others explore unsupervised approaches [21]. However, the variables required for predicting failures 

have consistently posed challenges. This paper addresses this gap by consulting experts to identify variables 

crucial for predicting failures, including water catchment area level, water quality index, lubrication 

frequency, water reservoir temperature, operating time, and power interruptions count. These variables, 

which have received less attention in previous research, are examined using supervised methods, 

specifically multiple-variable regression and decision tree cart. The continuation of this paper involves a 

literature review encompassing data mining and various methodologies. The research method and dataset 

type are then discussed, followed by a comprehensive exploration of two approaches: multiple-variable 

regression and decision tree cart. 

2 | Literature Review 

2.1 | Machine Learning Overview 

ML involves constructing an inductive model that autonomously learns from a limited dataset without 

requiring specialized intervention. This learning process involves identifying an underlying set of structures 

or patterns that prove valuable for comprehending relationships in data, even when it deviates from the 

original learning dataset. In the ML model taxonomy (Fig. 1), supervised learning predicts an output 

variable using labeled input data. In contrast, unsupervised learning makes inferences from unlabeled input 

data, as seen in clustering algorithms and recommender systems, among others. In supervised learning, 

distinctions are made between models predicting numeric variables (regression) and categorical variables 

(classifiers). Learning within models entails adjusting the model's parameters to a specific dataset and 

continually refining them through multiple passes of the data until a predefined function is minimized [22]. 
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Fig. 1. The categorization of ML models. 

2.2 | Regression 

The technique of "Multiple Linear Regression" is one of the common methods in multivariate analysis. 

According to regression analysis, a linear relationship is established between the "response variable" and 

one or more "explanatory variables." The response variable is usually referred to as the "dependent 

variable," and the explanatory variables are called "independent variables." In the multiple linear 

regression method, the parameters of a linear model are estimated. Essentially, linear regression 

represents a linear relationship in terms of the model parameters. If we have n observations of a p-

dimensional explanatory variable X and assume a linear relationship with the response variable y, we use 

the linear regression Model (1) [23]. 

Considering that the explanatory variable X has p dimensions, its value in each dimension is replaced by 

a one-dimensional independent variable. Note that the subscript or index i represents the observation 

number. At the end of the linear relationship, there is also the error term ε, which represents the 

regression model's error. 

2.3 | Decision Tree 

A decision tree is one of the ML techniques used to organize decision-making algorithms. An English 

decision tree algorithm is employed for classifying features in a dataset using a cost function. This 

algorithm grows before optimization and pruning branches that do not contain valuable information, 

encompassing features unrelated to the problem. Therefore, pruning operations are performed to 

eliminate these extra branches [24]. 

In this algorithm, parameters such as the depth of the decision tree are adjustable to prevent overfitting 

or excessive complexity of the tree as much as possible. Various types of decision trees in ML are utilized 

for classification problems based on the characteristics of the training data. This technique can also be 

used for regression problems or predictions of response variable values for unseen data. The main 

advantage of employing ML algorithms in problems is their simplicity, as they make the decision-making 

process easily understandable. However, with an increase in the number of tree branches, understanding 

and applying the algorithm may become challenging due to excessive complexity. Therefore, pruning 

the tree becomes essential in such cases. Generally, a decision tree is considered an algorithm to calculate 

the potential success of diverse decision-making sequences in achieving a specific goal. Steps for 

implementing a decision tree [24]: 

I. The first step is creating the top node, i.e., the root node, which includes the entire dataset. 

II. Using a feature selection criterion method, the most important feature in the data is chosen. 

III. Dividing the root node into child nodes that contain critical values for the most important features. 

IV. Creating decision tree nodes constructed from the most important features. 

 (1) 
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V. Using the subsets created from the dataset in the third step, new decision trees are recursively created. This 

process continues until nodes can no longer be further divided, and terminal nodes, known as leaf nodes, 

are obtained. 

In summary, the decision tree algorithm starts from the root node, selects the most important feature at 

each step, divides the dataset based on critical values for that feature, creates decision tree nodes, and 

recursively repeats the process until terminal nodes are formed. 

3 | Methodology 

In this study, to predict the number of failures per month for water booster pumps in the urban water 

treatment system, first, through interviews with experts in this field and reviewing the literature, factors 

and variables affecting the failure of this equipment were extracted. Then, with the permission of the Water 

and Wastewater Department, the required data was extracted from the reported data sets by the treatment 

plant. The data used in this research includes the values of variables collected by the pump maintenance 

officer over 168 weeks. 

Given that the beginning of any work and operation initially involves a set of preliminaries and 

preparations, data mining is no exception to this, always requiring preparations and initial processing, 

known as the preprocessing stage. Preprocessing plays a crucial role in the data processing process and, 

subsequently, in the obtained results. In this study, after receiving the data, preprocessing operations were 

performed on the data, and outlier data was extracted from the data set. After removing incompatible data 

and replacing missing values with median values, the data was prepared for processing. 

In the next stage, regression and decision tree methods were used to create a model for predicting the 

number of failures. Since ML models and data mining require the division of data into two groups, training 

and testing sets (and considering that the number of data points after preprocessing is 164, which is not a 

large number for ML models), we considered 50% of the data as test data and the remaining 50% as 

training data. In the next step, the regression method was implemented on the data, the basic assumptions 

of the regression model were examined, and finally, the results were investigated. 

Continuing to examine the data further, decision tree methodology and the C5.0 algorithm were used to 

extract rules for pump failures. However, before implementing the algorithm, the target variable data was 

transformed into categorical values to allow the C5.0 algorithm to extract rules more accurately. In the end, 

the results obtained from both models were compared with each other. The research execution stages are 

shown in Fig. 2. 

Table 1. Descriptive variables. 

 

 

 

 

 

 

 

Measurement Unit Role Symbol Variable 

Decimeter INPUT W. L Water catchment area level 

- INPUT WQI Water quality index 

- INPUT LUB Lubrication frequency 

Celsius INPUT TEMP Water reservoir temperature 

Hour (HOUR) INPUT OP. TIME Operating time 

- INPUT P.OUT Power interruptions count 

- OUTPUT NUM OF FAIL Number of failures 
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Fig. 2. Research execution stages. 

4 | Dataset and Research Variables 

The data for this study has been extracted from the Tehran purification plant in the city of Tehran. 
Following interviews with experts, the descriptive variables under investigation in this study are outlined 

in the Table 1. 

The descriptive statistics related to the collected data for variables are presented in Figs. 3-6, which is the 

output of IBM SPSS MODELER software. 

Fig. 3. Descriptive statistics of the problem data. 
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5 | Multiple Linear Regression Analysis 

After performing multiple linear regression on the variables, the predictor importance plot was obtained 

in Fig. 3. Typically, in modeling, efforts are made to focus on the most important predictor variables and 

either exclude or ignore those with less importance. The predictor importance plot, by indicating the 

relative importance of each predictor in estimating the model, helps you make these decisions. According 

to the results, the most important variable in pump failures is the power outage. In the next step, the 

temperature of the reservoir has a significant impact on the number of failures. The variable representing 

the operating time also has relatively high importance on the occurrence of failures. Lubrication frequency, 

water quality index, and water catchment area level variables are ranked third to sixth in importance, 

respectively. It is worth noting that while the water quality index and reservoir water level variables have 

less importance compared to other variables, based on expert opinions and the level of importance 

estimated from the model, their importance is not so low that they should be excluded from the model. 

Fig. 4. Predictor importance plot. 

The analysis of variance table (Table 2) for the regression model indicates that the obtained regression 

model is statistically significant, with a P-value less than 0.05. The F-statistic (F = 25.41) further suggests 

a high accuracy of the regression model. In Table 3, the regression coefficients of standardized variables 

show that the water reservoir level, continuous operating time, power outage frequency, and temperature 

positively influence the failure rate. Conversely, the water quality index and lubrication frequency negatively 

impact the failure rate. All descriptive variables are statistically significant, as indicated by the p-values less 

than 0.05. Overall, the regression model provides valuable insights into the relationship between various 

factors and the number of failures per month. 

 

 

Table 2. The analysis of variance. 

 

 

 

 

 

ANOVA 
Model Sum of Squares df Mean Square F Sig. 

1 Regression 417.312 6 69.552 25.421 .000b 
Residual 196.992 72 2.736   
Total 614.304 78    

b. Predictors: (Constant), TEMP, LUB, WQI, P.OUT, W.L, OP. TIME 
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 Table 3. The regression coefficients of the variables. 

 

 

 

 

 

 

 

Fig. 4 displays the output of the analysis node from the Modeler software. Based on the obtained results, 

the mean error in the training data is 0.00, and in the test data, it is 0.124, both very close to zero. The 

linear correlation between the actual target values (y) and predicted values (ŷ) in the training data is 0.835, 

and in the test data, it is 0.788, both very close to one. Fig. 5 illustrates the plot of predicted values against 

actual target values. As the figure indicates, there is a high correlation between the target and predicted 

values. 

 

Fig. 5. Output of the analysis node in IBM SPSS modeler. 

 

 

Fig. 6. Predicted values vs. actual target values. 

 

 

Model Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF 

1 (Constant) -1.896 1.540  -1.232 .222   

W.L .032 .035 .071 .913 .047 .849 1.178 

WQI -.051 .002 -.087 -.392 .046 .972 1.029 

P.OUT .172 .047 .246 3.694 .000 .392 2.548 

LUB -.136 .060 -.136 -2.263 .027 .484 2.067 

OP. TIME .100 .002 .280 4.533 .000 .457 2.187 

TEMP .146 .023 .426 6.387 .000 .391 2.557 
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To examine the lack of autocorrelation in the data, one can plot the order of data points (data number) 

against the errors. If no specific trend or pattern is observed, it can be assumed that the data points are not 

autocorrelated. Fig. 6 illustrates the plot of the order of data points against error values. As depicted in Fig. 

6, there is no discernible trend in error values with the progression of data points (x-axis). 

Fig. 7. The plot of error values against the order of data points. 

 

6 | Using the C5 Decision Tree Algorithm for Predicting the Number 

of Failures 

In this section, we aim to estimate the number of failures in water treatment pumps and examine the effects 

of variables, extracting rules for prediction using the C5 decision tree algorithm. Since the C5 algorithm is 

one of the supervised algorithms, where the target field, or the number of failures in this case, needs to be 

a categorical variable with categorical data, we first need to convert the values of the target field or the 

variable representing the number of failures into a categorical variable. To do this, after consulting with 

experts and observing the histograms of the data in the target field, four categories have been considered 

for this variable, as shown in Table 4. Fig. 7 illustrates the histogram of the target field data and its separating 

bands. 

Table 4. Target field classification. 

 

In this phase, after transforming the target field into categorical data, the dataset is divided into training 

and testing sets, each comprising 50% of the data. The C5 algorithm is then applied using Modeler software 

with specific settings for tree pruning and leaf minimum records. The executed regression tree, as depicted 

in Figs. 4-13, reveals that temperature is the most influential factor in causing failures, followed by operation 

time and oiling frequency. The tree, benefiting from pruning, incorporates water quality and river water 

level variables in rule extraction. The resulting rules are based on the values of the number of oiling 

instances, operation time, and temperature. The Predictor Importance table in Fig. 8 provides insights into 

the significance of each predictor in the decision tree. 

 

Formula Description of Classification Category 

'NUM OF FAILURE' < 3 Number of failures less than 3 1 

'NUM OF FAILURE' >= 3 and < 5 Number of failures greater than or equal to 3 and less than 5 2 

'NUM OF FAILURE' >= 5 and < 8 Number of failures greater than or equal to 5 and less than 8 3 

'NUM OF FAILURE' >= 8 Number of failures greater than or equal to 8 4 
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Fig. 8. The division of data is done to transform the target field data into 

categorical data. 

 

Fig. 9. The predictor importance levels obtained from the C5 decision tree. 

Based on the results obtained, the extracted rules from the decision tree are as follows: 

I. If the temperature is less than or equal to 19 degrees Celsius and the operation time is less than or 

equal to 165 hours, the variable 'band' is predicted to be 1. It implies that the number of failures per 

month will be less than 3. 

II. If the temperature is less than or equal to 19 degrees Celsius and the operation time is greater than or 

equal to 165 hours, the variable 'band' is predicted to be 2. It implies that the number of failures per 

month will be between 3 and 5. 

III. If the temperature is greater than 19 degrees Celsius and the oiling frequency is greater than 5 times, 

the variable 'band' is predicted to be 3. It implies that the number of failures per month will be 

between 5 and 8. 

IV. If the temperature is greater than 19 degrees Celsius and the oiling frequency is less than or equal to 

5 times, the variable 'band' is predicted to be 4. It implies that the number of failures per month will 

be more than 8. 

V. In other cases, option 2 for the variable 'band' is predicted, meaning that the number of failures per 

month will be between 3 and 5. 
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Fig. 10. The regression tree. 

 

7 | Evaluation of the Model Accuracy 

The output shown in Fig. 5 was utilized to assess the accuracy of the model created using the analysis node 

in the modeler software. Based on the obtained results, the model's accuracy on the training data is 

approximately 77%, and on the testing data, it is around 76%. It means that out of the 79 testing instances 

used, the model correctly predicted 61 and made 18 incorrect predictions. In the case of the testing data, 

out of 85 instances, the model made 65 correct predictions and 20 incorrect predictions. 

Table 5. Results of running the analysis node. 

 

 

8 | Conclusion 

This research adds valuable insights to the burgeoning realm of ML applications for predicting water pump 

failures. By emphasizing often-neglected variables, the study broadens the horizons of predictive models. 

The comparison of multiple regression and decision tree cart methodologies underscores their efficacy in 

tackling the intricacies of failure prediction. As a next step, future research could delve into additional 

variables, refining predictive models to elevate further the reliability and accuracy of failure predictions in 

water pump systems. The findings not only contribute to the academic discourse but also hold practical 

implications for improving the maintenance and performance of water pump systems. 

Partition 1_Training  2_Testing  

Correct 61 77.22% 65 76.47% 
Wrong 18 22.78% 20 23.53% 
Total 79  85  
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