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Abstract 

 

1 | Introduction  

In recent years, fractional calculus has gained significant attention for its ability to model complex 

phenomena in various fields such as physics, engineering, and finance [1]–[10], [11]–[13]. Fractional 

Integral Equations (FIEs), a vital component of fractional calculus, have been extensively studied and 

applied in numerous applications. To solve these equations, several numerical methods have been 

proposed, including finite difference methods [14], finite element methods [15], and spectral methods 

[16]. Among these methods, meshless methods have emerged as a promising alternative due to their 

flexibility and adaptability in handling irregular geometries and complex boundary conditions [17]. 

Radial Basis Functions (RBFs) are a popular choice for meshless methods as they provide a simple 

and efficient way to approximate functions in high-dimensional spaces [18]. RBF-based methods have 

been successfully applied to solve various types of integral equations, including Fredholm and 

Volterra integral equations [19]. However, the application of RBFs to FIEs is still relatively limited. 

Recent attempts have been made to develop RBF-based methods for solving FIEs. For example, 

Dehghan and Mirzaei [20] proposed a meshless method based on RBFs for solving Fractional 
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Fredholm Integral Equations (FFIEs), and Wang et al. [21] developed a similar approach for Fractional 

Volterra Integral Equations (FVIEs). These methods have demonstrated promising results in terms of 

accuracy and computational efficiency. Nevertheless, there is still room for improvement in the 

development of RBF-based methods for FIEs, particularly in the investigation of local RBF methods 

that focus on small subsets of the problem domain [22]. Meshless methods have garnered attention due 

to their straightforward numerical implementation without the need for meshing or re-meshing. These 

methods offer flexibility in handling irregular geometries and can be easily extended to higher-

dimensional problems. They can employ strong form [23]–[26] or weak form formulations of the 

governing equations [27]–[31]. Local methods have been proposed to address the fully assembled and 

ill-conditioned final matrices obtained by global methods. Popular local methods include the Local 

Multi-Quadric (LMQ) approximation method [32]–[34] and the Finite Collocation (FC) approach [35], 

[36] which reduce the problem into local sub-problems and assemble them into a sparse final global 

matrix. In this paper, we propose a Local Radial Basis Functions (LRBF) method for numerically solving 

FIEs. Our approach combines the advantages of RBFs and local methods, providing a flexible and 

efficient framework for solving a wide range of FIEs. We present a detailed analysis of the proposed 

method, including convergence properties and error estimates, along with numerical examples to 

demonstrate its effectiveness and robustness. The remainder of the paper is organized as follows: 

Section 2 presents basic definitions in FIEs and fractional calculus necessary for the subsequent sections. 

In Section 3, we describe the method of local RBF for discretization of FIEs. Numerical results are 

presented in Section 4. Finally, Section 5 provides a summary of the paper. 

2 | Fractional Integral Equations 

The basic definitions for the Riemann-Liouville Fractional Calculus (RLFC) [1], [37] are presented in 

this section. 

Definition 1 ([37]). Let a finite interval j=[a, b](-∞<a<b<∞)of . The left and right Riemann-Liouville 

Fractional Integrals (RLFIs)  a and t  of order  are given respectively as below: 

                         

and 

 

where Γ(α) is known as gamma function. In the special case of  , Eqs. (1) and (2) are the nth 

integrals in the following forms: 

                                    

and 

                  

Similarly, the below definition for the two dimensional RLFIs of order r is given by considering (J) as 

the space of Lebesgue-integrable functions  nω: J  with the following norm: 

 

where J = [0, a]×[0, b]. 

Definition 2 ([37]). The left-sided mixed RLFI of order r = (  of the function u(x, y) is defined as 

t
α α 1

a t
a

1
I f (t) (t x) f (x)dx,    (t a,α 0),

Γ(α)

      (1) 

b
α α 1

a t
t

1
I f (t) (x t) f (x)dx,    (t a,α 0),

Γ(α)

      (2) 

tn n 1

ta a

1
f (t) (t x) f (x)dx,

(n 1)!
I
  

   (3) 

bn n 1

bt t

1
f (t) (x t) f (x)dx.

(n 1)!
I
  

   (4) 

1

a b

L 0 0
w w(x,y) dydx,  ‖ ‖ ‖ ‖   
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where u 𝝐  r 𝝐 (0, ∞) and ϴ = (0, 0). So, we have 

I. (  

II. (  

III. (  

IV. Let λ, 𝜔  

The interested reader can refer to [38] for more details of the left-sided mixed RLFI. The following is the 

FVIE: 

where  is a real number, the right-side function f is given, and K(x, t) is the kernel.  is 

corresponding to the ordinary (non-fractional) Volterra equation. Note that when α  is non-integer, the 

term  adds only up for . Hence, defining the FFIE as the following form is reasonable: 

Two-Dimensional (2D) FVIE is defined as follows: 

3 | Discretization by LRBF 

In this section, the local RBF method is used as a technique for approximation of FIEs. The function Φ: 

R+ → R is RBF which is defined as the function of distance r = ǁ ǁ [39]. Our choice of RBF is the 

MQ ϕ(r)  which belongs to a class of infinitely differentiable global RBFs. Consider the 

following VIE of fractional order: 

A set of N distinct points X={  in R, which are called centers is used to discretize the domain 

of the problem. There are not any restrictions on the location of the centers or on the shape of domains. 

The solution u can be approximated at each of N centers by a localized formulation as below: 

where n is known as the number of nearest neighbouring points { } which surrounds the collocation 

point , containing the collocation point itself. The stencils are center and its n-1 neighbours. 𝜆𝑗 ′s are the 

unknown coefficients and ϕ is an RBF. By applying the interpolation conditions 

On each N stencil we have an n×n linear system ɸ . The matrix ɸ with elements ǁ

ǁ is called the interpolation matrix. If ϕ(x) is a positive definite RBF and all collocation points are 

distinct, then the interpolation matrix of RBF ϕ is non-singular and we have 

(5) 

(6) 

(7) 

(8) 

x
α 1

0

1
u(x) f (x) K(x, t)(x t) u(t)dt,   

Γ( )
0 α 1.

α

     (9) 

ũ ǁ ǁ (10) 

ũ ǁ ǁ ɸ (11) 
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where 

Therefore, the estimated solution  su x can be approximated by the given nodal values  s

ju x  at stencil 

points: 

where ɸ ǁ ǁ . If we rewrite Eq. (13) in the approximate solution terms ũ( at all collocation 

points, then 

where Ψ is a sparse matrix of order N×N which has at most n×N nonzero elements. Considering Eq. 

(6) and Legendre-Gauss-Lobatto nodes and weights, we have 

 

  

where and for k =1, 2, ..., m are Legendre-Gauss-Lobatto weights and nodes, respectively. Thus, 

we have 

As a system of linear sparse equations. The approximate solutions at all collocation points can be found 

by solving Eq. (15). In the same manner, for 2D-FIE we have 

       

where p=(x, y) and . We can remove the dependence on the RBF expansion 

coefficients from Eq. (16) by the following: 

 

Substituting Eqs. (16) and (17) in Eq. (9), we have 

Substituting the given collocation points into the above equation and applying Legendre quadrature 

integration formula, we obtain 

 

 

4 | Numerical Experiments 

In this section, we apply the proposed method on some test problems and then we present the numerical 

results. For evaluating error estimation, the quantity M = 2J can be defined in which J is the maximal 

level of resolution and the interval [a, b] can be divided into 2M subintervals with the equal length, and 

N = 2M + 1, where N is the number of collocation point xl. When the problem u = uex(x) has a known 

exact solution, the differences 

 

can be calculated and the error estimation can be estimated as 

 

or 

ɸ (12) 

 

ũ ɸ ɸ ɸ (13) 

ũ(  

 
 

     
m

 α 1
T

j k j k j k k

k 1

1
Ψu  f x  ω x t K x , t u Φ t ,   j 1,2,..., N,   i 1,2,...,n,

Γ α





     (14) 

ũ (15) 

ǁ ǁ (16) 

ǁ ǁ ɸ ɸ ɸ (17) 

ɸ ũ (18) 

 
   

      21

m m
r 1r 1 1

i j k l i k j l i j k j k l

k 0 l 01 2

1
Ψu g x , y   ω ω x ξ y τ K x , y ,ξ , τ , ξ , τ Φ u .

Γ r Γ r

 

 

      

ex l ex lΔ l u x — u x ,      l 1,2,.( ) ( ) ( ..,2M 1) ,    

ex l ex|δ max Δ ( ,l) |  
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When the problem has unknown exact solution, the problem can be solved by some level of resolution J, 

and (x) represents the result. Then, these calculations are repeated for J+1 getting (x). The differences                             

are defined, where xl, l = 1, 2, ..., 2M + 1 are the collocation points at the level J. The error estimations is 

then obtained with 

4.1 | Test Problem 1, Abel’s Integral Equation of the Second Kind 

The below Abel’s integral equation of the second kind is given [40]. 

 

Table 1. The RMS error obtained with different values of 

nodal N for Example 1.  

 

 

 

 

Fig. 1. RMS errors for local and global RBF methods for Example 1. 

Which its exact solution is u(x) =  . Numerical results versus the numbers of nodal points and stencil 

are shown in Table 1. Fig. 1 shows the error curves for local and global RBF methods with 50 number of 

nodal points. Fig. 2 presents the RMS error with 50 nodal points and versus stencils. According to Figs. 1 

and 2, the optimal choice of the stencil size for 50 nodal points is n = 6. The local method with n ≪ N is 

often just as accurate as the global method. 

 

ǁũ
ǁ

 

J l J l J 1 lΔ x u x —( ) ( ) ),(u x  

J J l J J lδ max Δ x ,   σ     || Δ x| ( ) | ( ) / .|| ( )2M   

 
   

x

0

2arcsin x u s1
u x  dt,  0 x 1.

1 x 1 x s x
    

  
 (19) 

 
N 

 
n = 6 

LRBF 
n = 9 

 
n = 16 

GRBF 

20 
30 
50 
85 

2.6 × 10−3 
2.1 × 10−3 
2.1 × 10−3 
1.9 × 10−3 

2.2 × 10−3 
2.2 × 10−3 
2.4 × 10−3 
3.0 × 10−3 

2.1 × 10−3 
2.5 × 10−3 
1.2 × 10−3 
1.7 × 10−2 

2.2 × 10−3 
2.3 × 10−3 
2.2 × 10−3 
1.6 × 10−3 
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Fig. 2. RMS error for N = 50 and versus stencils for Example 1. 

4.2 | Test Problem 2 

Consider the equation 
 

When α = 1, corresponding the non-fractional equation, u(x) = , x [0,3]  is the exact solution. 

Results obtained with N = 45 nodal points and stencil size n = 15 are given in Figs. 3 and 4 and Table 2. 

The analysis of error has been done for α = 0.9, Table 2 shows the results. Approximate solutions with 

various α are presented in Figs. 3 and 4. Considering the results, accuracy of the global method is more 

than local method, but the local method is faster. The results are the same as that of [41]. 

 Table 2. Numerical results for Example 2 with α = 0.9. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Numerical solutions of Example 2 for various α. 

 

     
x 3

α 1 α 1 2

0 x

1 15
u(x) [ (2 x t)(x t) u t dt 2 x t (x t) u t dt] x .

Γ(α) 4

             

 
J 

 
2M 

LRBF GRBF 
δJ σJ δJ σJ 

3 
4 
5 
6 

16 
32 
64 
128 

0.4784 
0.2482 
0.1772 
0.8643 

2.9 × 10-2 
7.8 × 10-3 
1.4 × 10-3 

6.8 × 10-3 

0.0329 
0.0325 
0.0367 
0.1239 

2.1 × 10-3 
1.0 × 10—3 

5.7 × 10-4 
9.6 × 10-4 
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4.3 | Test Problem 3, 2D Nonlinear FVIE 

Consider the following 2D nonlinear FVIE: 

 

 

Fig. 4. RMS error versus N for Example 2. 

For which the exact solution is u(x, y) = . The results with shape parameter c = 4 are presented in Table 

3. The RMS error versus the number of the nodal points N with 3 × 3 and 5 × 5 stencils is given in Fig. 5. 

Fig. 6 shows the error with N= 82, 3 × 3 and 5 × 5 stencils. Figs. 7 and 8 show the cross section of the 

approximate solutions and errors with N = 102, 3 × 3 stencils and fixed values of y. 

4.4 | Test problem 4, 2D nonlinear FFIE 

Consider the following 2D nonlinear FFIE: 

where 

 

Table 1. Numerical results obtained with different number of nodal points for Example 3. 

 

 

 

 

1 3 7
x y

2 32 2 2

0 0

1 1 x
u(x, y) (x s) (y t) xyt[u(s, t)] dtds y x y .

3 5 180 3
Γ( )Γ( )

2 2

   
        

   
  (20) 

7 1
T T

22 2

0 0

1
u(x, y) (T s) (T t) 5 s(y x)[u(s, t)] dtds f (x, y),

9 3
Γ( )Γ( )

2 2

 
     

 
   

 
2

T 1,

322560x 322349x 161069y
f x, y .

322560



 


(21) 

  3 × 3 Stencil 5 × 5 Stencil 
N δex RMS δex RMS 

62 1.3 × 10−2 5.8480 × 10−3 8.5 × 10−2 3.5273 × 10−3 
72 3.0 × 10−2 1.2000 × 10−3 4.6 × 10−2 2.9653 × 10−3 

82 1.1 × 10−2 3.7382 × 10−4 3.0 × 10−3 1.0000 × 10−3 
92 1.8 × 10−3 2.7669 × 10−4 2.9 × 10−3 9.5724 × 10−4 
102 2.1 × 10−4 8.6700 × 10−5 5.1 × 10−3 3.3647 × 10−4 
112 3.7 × 10−4 9.2053 × 10−5 4.2 × 10−2 3.2812 × 10−3 
122 7.4 × 10−3 8.1000 × 10−4 7.5 × 10−2 1.4528 × 10−2 
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Fig. 5. RMS error versus N for Example 3 obtained with 

3×3 and 5×5 sencils. 

 

Fig. 6. RMS error obtained for Example 3. 

 Table 4. Numerical results obtained with different number of nodal points for Example 4. 

 

 

 

And the exact solution of this equation is   2 1
u( x, y ) x x y.

2
 The results with different number of 

nodal points are shown in Table 4. 

 

 

 3 × 3 Stencil 5 × 5 Stencil 
N δex RMS δex RMS 

62 1.2 × 10−3 5.9600 × 10−4 8.2 × 10−3 8.9394 × 10−4 

72 1.0 × 10−3 5.8873 × 10−4 6.6 × 10−3 5.6580 × 10−4 

82 1.0 × 10−3 2.3020 × 10−4 5.4 × 10−3 3.4530 × 10−4 

92 6.4 × 10−4 2.9741 × 10−5 3.2 × 10−3 3.0230 × 10−4 
102 3.4 × 10−3 1.0102 × 10−4 5.8 × 10−4 2.9436 × 10−5 
112 4.3 × 10−3 5.6420 × 10−4 6.3 × 10−4 2.3549 × 10−4 
122 6.3 × 10−2 2.3751 × 10−3 2.6 × 10−2 1.1205 × 10−3 
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Fig. 7. Cross section of approximate solution obtained with N = 

102 and 3×3 stencils for Example 3. 

4.5 | Test Problem 5 

Consider the 2D nonlinear FVIE: 

where  

β(., .) denotes the two dimensional Beta function. Exact solution of this problem is u(x, y) = x2(y 2−y). 

Table 5 illustrates the numerical results with different number of nodal points for this test problem. The 

results obtained in Test Problems (3), (4) and (5) with local RBF method are more accurate than the results 

obtained in [37]. 

 

Fig. 8. Cross section of approximate solution obtained with 

N = 102 and 3×3 stencils for Example 3. 

 

 

 
1 1 4 2

x y 2
3 3 3 3

0 0

1 4 2
u(x, y) (x s) (y t) β , x y u s, t dtds f (x, y),

4 2 3 3
Γ Γ

3 3

  
         

      
   
   

   

 
  2 2

2
19683x 77y 18y 3y 7

f x, y x y y 1 .
22422400

  
   
 
 
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Table 5. Numerical results obtained with different number of nodal points for Example 5. 

 

 

 

 

5 | Conclusion 

A meshless local RBF method was proposed for solving one and two-dimensional FIEs. In the local 

RBF method, the approximate solution at stencil centers was expressed in terms of the given nodal 

values u(xj), which correspond to the n-nearest neighboring points. This allowed for the determination 

of the approximate function values at the nodal points without the need to calculate unknown 

coefficients λj. Numerical results demonstrated that the local RBF method outperformed the global RBF 

method, particularly in two-dimensional FIEs. This suggests that the local RBF method is more suitable 

for high-dimensional problems. 

The effectiveness of the proposed method can be attributed to the following reasons: 

I. The use of the strong form equation and collocation approach simplified the method. 

II. By employing the localization approach, the matrix operations only required the inversion of small-

sized matrices, resulting in a sparse final global matrix. 

Based on these advantages, it is recommended to utilize the proposed method for tackling more complex 

and similar applied problems. 
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