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Abstract 

   

1 | Introduction 

This paper considers the single machine earliness-tardiness scheduling problem with sequence-

dependent setup time and distinctive due date (SETSDSND) for jobs with varying processing times. 

This type of problem often arises in manufacturing systems such as plastic and glass manufacturing 

industries, where the setup times are significant [1]. Setups usually correspond to preparing the 

resources for the execution of the next job. When the duration of such operations depends on the 

type of last completed job, the setups are called sequence-dependent. A comprehensive review of 

sequence-dependent scheduling problems is provided in [2]. Literature reveals that the majority of 

scheduling research assumes that setup time is negligible or part of the job processing time. This 

assumption makes the model inapplicable in the real environment. 
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The study of earliness and tardiness penalties in scheduling problems is a relatively new area of research 

[3] that received considerable attention in recent years due to its compliance with the new concepts of Just-

in-Time (JIT). In the JIT manufacturing system, jobs are needed to arrive and processed just as they are 

needed, not earlier nor later. Earliness causes a high cost of inventory holding, and lateness delays other 

jobs. Thus, any schedule of a set of jobs should strive to minimize total earliness and tardiness, where 

tardiness reflects customer satisfaction and earliness measures inventory performance [4]. 

Traditionally, the processing time of jobs is assumed to be independent of their position or starting time. 

However, there are many practical situations in which the actual processing time of jobs may be subject to 

change due to the effect of learning or deterioration. In scheduling with the learning effect, the actual 

processing time of a job is modeled as a decreasing function if it is scheduled later in the sequence. This is 

due to the fact that workers can learn when they are processing similar jobs. So, the effect of worker 

learning on processing times is also considered in this research. 

Single Machine Earliness-Tardiness Scheduling Problem (SMETP), even in the simplest formulation, is an 

NP-hard optimization problem [3]. Due to the complexity of this problem, recently, some researchers have 

addressed the problem using meta-heuristics such as Genetic Algorithm (GA) [5], Tabu Search (TS) [6], 

[7], or hybrid algorithms [8]. Lee and Kim [5] developed parallel GAs for SMETP with a common due 

date. Hao et al. [6] solved this problem by minimizing the sum of weighted earliness and tardiness values 

using the TS method. A hybrid algorithm that combines local search heuristics and GA is proposed by 

M’Hallah [4] to solve SMETP with distinct due dates in the JIT production environment. 

Nearchou [9] considered a single-machine problem with a common due date that minimizes a summation 

of earliness and tardiness cost. A differential evolution approach was proposed to solve the given problem. 

Chang et al. [10] studied the problem of scheduling a single machine with a distinctive due date and learning 

effect with the objective of minimizing the weighted sum of earliness and tardiness. They presented a GA 

to solve their problem. Valente and Goncalves [11] studied the problem of scheduling jobs on a single 

machine where the objective was to minimize linear earliness and quadratic tardiness costs. They proposed 

a genetic approach based on a random key alphabet. 

However, none of these research studies take into account the sequence-dependent setup time and assume 

that setup time is part of the job processing time. Moreover, most of these works consider the processing 

time of jobs to be independent of their position or starting time. The contribution of this paper is the 

development of a new Mixed Integer Linear Programming (MILP) model to formulate the SETSDSND 

problem with the effect of learning in processing time. Because of the complexity of this problem, a Hybrid 

Particle Swarm Optimization (HPSO) with new particle representation is proposed to solve the model. 

Standard particle optimization is generally used to solve continuous optimization problems and is rarely 

used to solve discrete problems such as scheduling problems. Therefore, a new particle representation 

based on a random key alphabet, which converts the sequence of jobs to continuous position values, is 

designed in this paper. This representation was first introduced by Bean [12] for sequencing and 

optimization problems. 

The remaining sections of this paper are organized as follows. Section 2 presents an integer linear 

programming formulation for the SETSDSND problem. A brief overview of Particle Swarm Optimization 

(PSO) is explained in Section 3. Section 4 describes the proposed HPSO approach and highlights the new 

features introduced. Computational results are reported in Section 5. Finally, Section 6 summarizes the 

contribution of this paper and gives the conclusion. 

2 | Problem Formulation 

The problem under study is to schedule N jobs with distinct due dates and varying processing times on a 

single machine. All jobs are ready at time zero, the machine is continuously available, and it can handle 

only one job at a time. Preemption is not allowed, and there is no precedence relationship between jobs. 



 

 

76 

C
h

in
if

o
ro

o
sh

a
n

 a
n

d
 M

a
ri

n
k

o
vi

c
 |

C
o

m
. 

A
lg

. 
N

u
m

. 
D

im
. 

2
(2

) 
(2

0
2
3
) 

7
4
-8

6
 

 

For each job j= 1, 2, …, N, the following quantities are given: a normal processing time pj and a due 

date dj. A sequence-dependent setup time Sij must be waited before starting the processing of job j if it 

is immediately following job i in sequence. Sii denotes the setup time for job i when it is the first in the 

sequence. Because of the learning effect, the processing time of a job depends on its position in the 

sequence. Hence, the actual processing time of the jobs when scheduled in position k is given by 

Where Pjr is the processing time of job j in position k, and a is the learning index (a < 0). The objective 

of the problem is to find a sequence of jobs that minimizes the total sum of earliness and tardiness. Let 

M be a large positive number. Moreover, let Cj, Ej, and Tj represent the completion time, earliness, and 

tardiness of job j, respectively. To formulate the above problem as MILP, define a binary variable Xjk 

that takes on value 1 if job j is assigned on position k and zero otherwise. 

Based on the definition and notation described above, the SETSDSND problem with learning effect 

can be formulated as a MILP model, as shown below: 

and boundary conditions are 

The objective of the model in Eq. (2) is to minimize the total tardiness and earliness of the problem. 

Constraints (3) and (4) ensure that each job can be assigned to one of the existing positions and each 

position can be occupied by only one job. Constraint (5) ensures that the completion time of a job in 

sequence will be at least equal to the sum of the completion time of the preceding job, the sequence-

dependent setup time, and the processing time of the present job. Constraint (6) calculates the completion 

time of the job in the first position. Constraint (7) specifies the earliness and tardiness of jobs. Constraints 

(8) and (9) define the type of decision variables. 

 

 

 (1) 

(2) 

 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

 (9) 
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3 | Particle Swarm Optimization 

PSO is a population-based stochastic optimization algorithm inspired by the behavior of a bird flock. The 

individuals in a PSO are denoted particles. The PSO algorithm represents each potential solution by the 

position of a particle in multi-dimensional hyperspace. Throughout the optimization process, velocity and 

displacement updates are applied to each particle to move it to a different position and, thus, a different 

solution in the search space. PSO refines its search by attracting the particles to positions with good 

solutions. PSO remembers the best position found by any particle (gbest). Also, each particle remembers 

its own previously best-found position (pbest). Suppose that the position of the particle i at the tth iteration 

is represented by . Then, the velocity vector of particle i at iteration t+1( ) is updated by the Eq. (10). 

 

Where  is the inertial weight, which is introduced to balance between the global and local search abilities, 

 is the best-found position of the ith particle at the tth iteration, and  is the best position known for all 

particles.  and  are the cognitive and social acceleration constants, and  is a random number 

generator with a uniform distribution over [0,1]. The position of each particle is updated in each iteration 

by adding the velocity vector to the position vector according to Eq. (11). 

This simultaneous movement of particles towards their own previous best solutions and the best solution 

found by the entire swarm results in the particles converging to one or more good solutions in the solution 

space. 

4 | Proposed Hybrid PSO Approach 

Even the simplest formulation of SMETP is an NP-hard optimization problem [3]. Therefore, the 

SETSDSND problem is also NP-hard because the incorporation of setup time will complicate the 

problem. Optimal solutions cannot be obtained for problems of reasonable size, and heuristics have to be 

utilized to obtain good near-optimal solutions. PSO, first introduced by Eberhart and Kennedy [13], is one 

of the most recent and hopeful heuristic techniques that has been applied to a wide range of applications 

such as power and voltage control [14], task assignment [15], project scheduling [16], cell formation 

problem [17], flow shop sequencing problem [18]. 

Because of the continuous nature of the position of particles in PSO, the standard PSO is rarely used to 

solve discrete problems such as scheduling problems. Thus, the most important issue in applying PSO to 

solve the SMS problem is to find a suitable method to represent the job sequence and the position of 

particles in PSO. Therefore, a new particle representation based on a random key alphabet, which converts 

the sequence of jobs to continuous position values, is designed in this paper. By this representation, the 

continuous version of PSO can be used. 

In this research, HPSO algorithm is presented to solve the SETSDSND problem with a learning effect. 

The proposed HPSO contains the following parts: initialization, random key encoding scheme, local search 

procedure, and the PSO component. The following subsections describe how the implementation of the 

HPSO to solve the proposed model works out. 

4.1 | Initialization 

As mentioned before, each particle has its own position and velocity vector. Initial positions for particles 

that are the initial sequences are generated under some controls. In particular, two constructive heuristics, 

the Earliest Due Date (EDD) and the Shortest Processing Time (SPT), are used to generate two initial 

(10) 

(11) 
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positions. Then, the algorithm generates other initial positions randomly. The velocity vector of each 

particle is initialized randomly from a uniform distribution between 0 and 0.5. 

4.2 | Solution Representation and Decoding 

The standard PSO cannot be used directly to solve discrete problems since it was originally designed to 

solve continuous problems. Therefore, the proposed HPSO approach uses a random key scheme [12] 

to encode solutions. Based on this representation scheme, the sequence of jobs on the machine can be 

converted to continuous position values. Each position is a vector of uniform random numbers between 

0 and 1. Thus, each particle is encoded as a vector of random keys. 

In order to evaluate the fitness function of each particle, it is necessary to decode it into a sequence of 

jobs. The decoding of a chromosome into a sequence is accomplished by sorting the jobs. Then, the 

fitness of each particle is evaluated by Eq. (2). Fig. 1 illustrates the solution representation and decoding 

procedure. 

 

Fig. 1. Solution representation and decoding. 

4.3 | Main PSO Procedure 

The PSO procedure is the main component of the proposed HPSO algorithm. As mentioned before, a 

random key representation is used to represent each particle, which can convert the job sequence to 

continuous values. So, the standard PSO can be used to solve the presented problem. The standard 

PSO, described in Section 3, consists of a number of particles moving around in continuous search 

space. Each particle has its own position and velocity. In the proposed algorithm, the initial population 

is composed of Np particles. The size of the population is kept constant throughout the procedure. In 

each iteration, the velocity and position of each particle are updated according to Eq. (10) and Eq. (11). 

4.4 | Local Search Procedure 

After HPSO generates new particles, the local search procedure is included within the algorithm to 

enhance the algorithm's exploitation ability. The Adjacent Pairwise Interchange (API) local search is 

used in this paper. In each iteration of the API procedure, all adjacent job positions are considered. A 

pair of adjacent jobs are then swapped if such an interchange improves the objective function value. 

This process is repeated until no improvement is found in a complete iteration. Fig. 2 shows the 

framework of the HPSO for solving the SETSDSND problem. 

5 | Computational Results 

In this section, the effectiveness of the proposed HPSO algorithm in solving the SMETP with sequence-

dependent setup time and learning effect is evaluated. Because no sample problems were found in the 

literature that could be used as a benchmark for testing the algorithm, a number of test problems are 

randomly generated in small and large sizes. To generate data, such as processing times, setup times, and 

due dates, the methods presented in [19] are used. The value of learning index (a) is considered -0.322, 

which corresponds to 80% of learning curves. 

 

Job index: 1 2 3 4 5

Particle 0.46 0.91 0.33 0.75 0.51

Sorted gene values: 0.33 0.46 0.51 0.75 0.91

Decoded sequence: 3 1 5 4 2
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Fig. 2. The general framework of the proposed HPSO. 

5.1 | Parameter Setting 

 The selection of suitable parameters for the algorithm's performance evaluation is one of the most 

important issues in PSO. Therefore, preliminary experiments are performed to determine the algorithm 

parameters. In this study, three parameters are examined. These parameters are inertia weight w and the 

acceleration constants c1 and c2. The inertia weight, w, is important in ensuring that a suitable trade-off is 

obtained between exploration of different areas of the search space and further exploitation of good areas. 

Large values of w thus encourage exploration, while smaller values encourage exploitation. The two 

acceleration coefficients (c1 and c2) control the influence of the cognitive and social components on 

particle velocity. In order to determine these parameters, four test problems with different sizes are tested 

with the following values: 

In each experiment, the population size (Np) is set to 100, and the number of generations (Ng) is set to 

200. Due to the probabilistic nature of the proposed method, each problem is solved 10 times, and the 

best solution (Min), the average of the 10 runs (Avg), and the worst value (Max) among the ten runs are 

obtained. These results are summarized in Tables 1-3. According to the obtained results, with w= 0.8 and 

C1=C2= 1.2 or w= 1 and C1=C2= 1.5, HPSO can yield better solutions. 



 
  

No

Yes

Start

Set algorithm parameters

Initialize particle swarm and
set t= 0

Evaluate the inital particles to get 
pbest and gbest positions

Update the velocity and position 
according to equation (10) and (11)

Evaluate new particles and update 
pbest and gbest

Set t= t+1

Stopping
criteria 

satisfied?

Local search procedure and 
update pbest

Get the best schedule

Decode schedule

End
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 Table 1. Result analysis of HPSO with w= 0.6 and different values of C1 and C2. 

 

 Table 2. Result analysis of HPSO with w= 0.8 and different values of C1 and C2. 

 

 

 Table 3. Result analysis of HPSO with w= 1 and different values of C1 and C2. 

 

 

 

 

 

 

 

5.2 | Small and Medium-Sized Problems 

In order to validate the performance of the HPSO algorithm, test problems are solved by using two 

approaches: the optimal solution approach (i.e., Branch and Bound) under the LINGO 8.0 software and 

the proposed HPSO. These problems are solved on a personal computer with an Intel Core2, 2GHz 

CPU, and 2 GB memory. The proposed algorithm is written in MATLAB 7.6 on the above-mentioned 

system. For small and medium-sized problems, the results of the HPSO algorithm are compared with 

the best solution obtained by the LINGO. Small-sized problems are optimally solved by a Branch and 

 Example 1 Example 2 Example 3 Example 4 

C1= C2 JobNum= 40 JobNum= 60 JobNum= 80 JobNum= 100 

Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

0.5 1137 1279 1451 2580 2877 3162 5213 5715 6438 8929 9838 10641 

0.7 1147 1222 1355 2378 2577 2888 4668 4956 5298 7730 9205 10290 

0.9 1074 1155 1346 2264 2501 2768 4199 4605 5116 6966 7670 9208 

1 1033 1110 1180 2232 2333 2469 4010 4376 5322 6184 6870 8478 

1.2 1012 1084 1230 1977 2141 2619 3583 3882 4559 5625 6132 7792 

1.5 1027 1100 1176 1938 2106 2410 3554 4120 5839 5844 6520 9784 

1.7 1040 1094 1203 2010 2219 3186 3826 4151 5166 5962 6976 10700 

2 1042 1209 1641 2131 2332 3036 3984 4499 7074 6292 7522 11295 

 Example 1 Example 2 Example 3 Example 4 

C1= C2 JobNum= 40 JobNum= 60 JobNum= 80 JobNum= 100 

Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

0.5 1154 1286 1624 2728 2974 3321 4900 5557 5931 8524 9873 11153 

0.7 1049 1190 1305 2441 2632 2771 4583 5104 5694 7246 8449 9444 

0.9 1041 1164 1330 2078 2370 2503 4118 4624 4989 6636 7609 8909 

1 1035 1119 1280 2183 2291 2617 3872 4198 5438 6446 7032 9415 

1.2 964.1 1097 1258 1997 2209 2799 3501 3996 5154 5709 6451 9062 

1.5 1007 1094 1506 1962 2253 3074 3581 4148 5776 5724 6891 13063 

1.7 1029 1123 1501 1990 2311 3493 3703 4281 6912 6029 6877 10561 

2 1052 1123 1345 2092 2347 3028 3989 4476 6424 6371 7486 11487 

 Example 1 Example 2 Example 3 Example 4 

C1= C2 JobNum= 40 JobNum= 60 JobNum= 80 JobNum= 100 

Min Avg Max Min Avg Max Min Avg Max Min Avg Max 

0.5 1092 1207 1315 2553 2971 3714 5108 5570 5972 8054 9702 11049 

0.7 1065 1151 1262 2330 2610 2988 4601 5281 6308 7856 8824 9643 

0.9 1047 1127 1274 2222 2716 4956 4093 4502 6119 7070 7980 10426 

1 1039 1085 1153 2103 2322 3070 3881 4323 5719 6223 7267 11295 

1.2 1056 1121 1338 2066 2245 3234 3541 4235 7130 5741 6545 9182 

1.5 969.2 1115 1510 1969 2284 3434 3684 4246 6647 5592 6568 10130 

1.7 969.4 1153 1510 1997 2290 3704 3665 4340 6840 5908 6980 11734 

2 1040 1257 2050 2140 2510 3638 3819 4666 6849 6073 7657 11873 
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Bound method. However, it is impossible to obtain an optimal solution for medium-sized problems. For 

the medium-sized examples, the run time of LINGO is limited to 3 hours. Thus, the best solution obtained 

after 3 hours is reported for medium-sized problems. 

Table 4. Comparison of LINGO results with HPSO results for small and 

medium-sized problems. 

 

 

 

 

 

 

 

  

  

Table 4 provides a comparison of the solutions to the MILP model generated by the branch and bound 

method and the solution obtained by HPSO for small and medium-sized problems. From this table, it can 

be noticed that the solutions from the HPSO algorithm are also optimal for these problems. However, the 

CPU times of these two methods are not obviously comparable. The CPU time of the Branch and Bound 

method increases the size of test problems and has an exponential trend. 

Table 5. Parameters used in HPSO. 

 

 

 

Table 6. Parameters used in RKGA. 

 

 

 

5.3 | Large-Sized Problems 

In order to test the applicability of the proposed HPSO to solve large-sized problems, 120 instances are 

generated with varied sizes from 60 jobs to 300 jobs. Because the problem under study is NP-hard, only 

small-sized problems can be solved optimally using LINGO. So, In order to evaluate the efficiency of the 

HPSO in large problem sizes, the results of the proposed HPSO are compared with the Random Key 

Genetic Algorithm (RKGA). The RKGA was introduced by Bean [12] and has been used in numerous 

  LINGO HPSO 

No. 
Example 

No. 
Jobs 

OPT. 
Value 

CPU Time 
(Sec) 

Fitness 
Value 

Mean CPU 
Time (Sec) 

1 6 46.96 3 46.96 0.53 

2 6 33.60 2 33.60 0.62 

3 7 80.08 19 80.08 0.75 

4 7 57.89 20 57.89 0.78 

5 8 77.95 254 77.95 0.96 

6 8 88.59 201 88.59 0.87 

7 9 144.98 3193 144.98 1.52 

8 9 84.73 3286 84.73 1.31 

9 10 190.76 10800 187.43 2.22 

10 10 141.71 10800 135.81 1.88 

11 12 236.89 10800 226.29 2.52 

12 14 247.48 10800 201.57 2.94 

13 16 389.43 10800 314.14 2.64 

14 18 378.27 10800 271.98 3.45 

Parameters Description Value 

w Inertia weight 0.8 

c1 and c2 Acceleration constants 1.2 

Np Population size 120 

Ω Constant coefficient 0.4 

Parameters Description Value 

Cp Crossover probability 0.7 

Mp Migration probability 0.2 

Ep Elite percent 0.1 
Np Population size 120 
Ω Constant coefficient 0.4 
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applications of combinatorial optimization [11], [20], [21]. Bean [12] shows the robustness of RKGA by 

using it to evaluate machine scheduling, vehicle routing, and quadratic assignment problems. 

The RKGA begins by assigning a random number to each job. The jobs are then initially sorted 

according to their key value. Then, the crossover operator is applied to each job’s value. In this 

algorithm, the migration operator replaces the traditional mutation operator. In the migration phase, 

new individuals are randomly generated and added to the new population. Migration is used to ensure 

diversity. The genetic operators used in this research are elitist reproduction, migration, and uniform 

crossover with tournament selection, similar to those in Bean’s and Samanlioglu’s research [22]. Also, 

Valente and Gonçalves [11] show that the RKGA with a local search procedure provides better results. 

So, the API local search procedure, as mentioned in section 4.2, is applied in the RKGA procedure. 

Table 7. Comparison of the HPSO and RKGA for instances with 60 jobs. 

 

 

 

 

 

 

 

 

 

 

 

The comparison of HPSO and RKGA is made in terms of solution quality. For each instance, 10 

independent runs are performed for two algorithms. Also, limited computational time is utilized as a 

stopping criterion in both algorithms to provide a fair opportunity for comparing algorithms. The 

computational time for each size of the problem is calculated according to N×Ω, where N is the number 

of jobs, and Ω is a constant coefficient. By different values of Ω, different computational times could 

be obtained. The algorithm parameters used in HPSO and RKGA in all experiments are given in Table 

5 and Table 6, respectively. 

The comparison results obtained by HPSO and RKGA for test problems with different job numbers 

are summarized in Tables 7-12. Each table consists of 20 instances for each size. From the results 

presented, it can be observed that HPSO outperforms RKGA in solving all the instances. 

 

 

 

No. HPSO RKGA 
Min Avg Max Min Avg Max 

1 1696.45 1796.83 1906.07 1696.45 1748.78 1799.78 
2 2086.90 2214.30 2438.68 2163.41 2249.48 2438.68 

3 1938.80 2009.15 2144.98 1908.06 1961.83 2013.21 

4 2266.45 2332.15 2432.15 2327.80 2371.07 2404.64 

5 1889.41 1965.27 2037.46 1889.41 1942.50 2049.60 

6 2499.57 2564.03 2723.57 2512.68 2629.68 2723.57 

7 1928.95 1988.55 2119.93 1942.40 1988.46 2041.99 

8 2216.81 2295.87 2379.87 2240.06 2277.52 2360.36 

9 1504.97 1566.49 1713.50 1451.45 1548.32 1713.50 

10 2295.71 2405.46 2510.45 2342.37 2388.82 2472.46 

11 2367.73 2461.45 2569.44 2391.04 2451.97 2527.78 

12 2017.78 2198.22 2287.30 2039.40 2114.98 2192.79 

13 1739.38 1789.64 1861.78 1733.65 1767.13 1808.64 

14 1477.96 1573.56 1694.00 1477.96 1560.84 1619.63 

15 1797.02 1872.58 1926.74 1736.78 1834.37 1911.93 

16 1809.76 1877.73 1964.49 1823.50 1895.71 1961.63 

17 1798.80 1837.64 1891.84 1730.39 1838.34 1923.49 

18 2105.85 2185.40 2278.14 2108.31 2220.34 2395.40 

19 1958.97 2028.98 2111.84 1972.10 2054.51 2154.66 

20 1870.99 1969.59 2100.31 1906.34 1973.61 2047.48 



83 

 

A
 h

y
b

ri
d

 p
a
rt

ic
le

 s
w

a
rm

 o
p

ti
m

iz
a
ti

o
n

 a
lg

o
ri

th
m

 f
o

r 
si

n
g

le
 m

a
c
h

in
e
 s

c
h

e
d

u
li

n
g

 w
it

h
 s

e
q

u
e
n

c
e
-d

e
p

e
n

d
e
n

t 
se

tu
p

 t
im

e
s 

a
n

d
 l

e
a
rn

in
g

 e
ff

e
c
ts

 

 

Table 8. Comparison of the HPSO and RKGA for instances with 100 jobs. 

 

 

 

 

 

 

 

 

 

 

 

6 | Conclusions 

This paper considered the single machine earliness-tardiness scheduling problem with sequence-dependent 

setup time and distinctive due date (SETSDSND) for jobs. Also, the processing time of jobs is dependent 

on their position due to the effect of worker learning. A MILP model was proposed and evaluated to solve 

this problem optimally using the LINGO solver. However, the CPU time required by this procedure 

increases exponentially as the problem size increases, and only small problems can be solved optimally 

using LINGO. Therefore, a HPSO method is proposed to find optimal or near-optimal solutions for large-

sized problems. 

The proposed HPSO approach uses a random key scheme to encode solutions, which can convert the job 

sequences to continuous position values. Also, in order to enhance the exploitation of the HPSO, the local 

search procedure was included within the algorithm. In addition, the parameter setting of three parameters 

of HPSO was investigated. The performance of the proposed HPSO was verified for small and medium-

sized problems by comparing its results with the best solution obtained by the LINGO. The results showed 

that the solutions from the HPSO algorithm were also optimal for these problems. In order to test the 

applicability of the proposed algorithm to solve large-sized problems, 120 instances were generated, and 

the results of HPSO were compared with the RKGA. The results indicated that HPSO performs better 

than RKGA. 

As an interesting future research, a further interesting issue is the consideration of realistic assumptions 

such as precedence constraints in the model. Another direction could be the extension of the proposed 

algorithm to more complex machine environments and other optimality criteria. Also, it is possible to 

develop additional meta-heuristic algorithms. 

 

No. HPSO RKGA 
Min Avg Max Min Avg Max 

1 6040.35 6205.11 6299.94 6276.11 6455.95 6596.25 
2 3553.99 3748.99 3890.76 3710.01 4022.21 4156.29 

3 4540.22 4652.69 4763.22 4643.74 4863.00 5074.36 

4 5372.94 5505.47 5795.70 5372.94 5821.67 6019.80 

5 5752.33 5961.52 6241.24 5946.29 6129.01 6209.39 

6 3943.60 4128.31 4230.38 3943.60 4201.77 4446.73 

7 4067.33 4254.32 4385.10 4282.52 4450.93 4624.18 

8 4672.27 4831.35 4973.94 4973.94 5252.04 5511.40 

9 6926.95 7053.89 7236.57 6977.84 7175.06 7315.29 

10 4397.10 4544.05 4741.06 4563.88 4780.42 4982.87 

11 4453.74 4631.51 4919.81 4659.73 4790.45 4989.70 

12 6047.29 6224.15 6411.15 6327.15 6490.57 6669.86 

13 3971.60 4073.03 4186.21 3971.60 4221.13 4391.96 

14 4553.92 4841.71 5112.16 4850.00 4963.72 5112.16 

15 4712.05 4821.98 4883.02 4801.10 5230.76 5533.07 

16 3935.68 4169.47 4411.23 4088.89 4388.73 4596.62 

17 5763.28 5863.14 6067.70 5768.12 6141.77 6442.44 

18 6033.60 6169.65 6275.35 6033.60 6337.28 6697.96 

19 7040.12 7311.50 7481.35 7396.00 7523.18 7670.16 

20 5720.35 5900.49 5996.65 5970.37 6199.58 6302.57 
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 Table 9. Comparison of the HPSO and RKGA for instances with 120 jobs. 

 

 

 

 

 

 

 

 

 

 

 

 

 Table 10. Comparison of the HPSO and RKGA for instances with 150 jobs. 

 

 

 

 

 

 

 

 

 

 

 

 

No. HPSO RKGA 
Min Avg Max Min Avg Max 

1 7339.97 7496.91 7650.84 7370.69 7474.35 7598.71 
2 7038.23 7177.74 7260.93 7178.72 7565.56 7875.07 

3 6123.39 6383.86 6523.96 6523.96 6706.89 6956.93 

4 6700.15 7062.86 7362.54 7178.39 7603.15 7969.23 

5 5966.54 6178.06 6623.91 6044.98 6613.73 6942.27 

6 5296.32 5512.49 5648.35 5563.87 5895.53 6126.99 

7 6226.85 6348.91 6450.16 6449.50 6800.99 7197.93 

8 7159.33 7225.06 7279.78 7221.57 7462.01 7599.62 

9 6458.46 6692.57 7012.28 6521.85 7071.21 7264.73 

10 7102.04 7269.11 7394.55 7102.04 7810.97 8166.19 

11 7236.65 7425.66 7683.24 7591.10 7740.02 7931.65 

12 9176.11 9463.88 9809.18 9454.03 9655.47 10076.39 

13 5270.28 5584.15 5760.73 5308.60 5694.07 5892.89 

14 8544.59 9025.37 9267.84 9033.71 9307.10 9546.05 

15 7441.27 7573.07 7719.39 7470.12 7689.22 8194.90 

16 6753.06 6991.43 7329.10 7020.78 7316.98 7583.99 

17 8188.03 8437.08 8684.57 8374.03 8601.78 8845.32 

18 6072.19 6202.64 6361.52 6361.52 6504.94 6732.88 

19 6434.57 6801.77 7043.96 6985.53 7237.08 7439.80 

20 7257.18 7425.29 7635.47 7257.18 7822.46 8187.19 

No. HPSO RKGA 
Min Avg Max Min Avg Max 

1 10935.18 11181.27 11459.47 11371.07 11926.64 12308.50 
2 9509.90 9868.68 10477.48 10477.48 10722.21 10936.77 

3 11708.69 11933.82 12284.87 11708.69 12535.29 13226.25 

4 11184.28 11698.35 12132.78 11184.28 12244.84 12808.22 

5 11712.38 11863.10 11961.66 11961.66 12829.64 13482.66 

6 11495.30 11744.47 12059.78 12059.78 12654.30 13461.20 

7 11855.33 12030.04 12231.21 12225.30 12849.70 13102.76 

8 13081.39 13643.93 13982.09 13081.39 13988.45 14538.87 

9 9854.45 10346.96 10786.37 9854.45 10913.36 11365.99 

10 11057.99 11272.48 11515.50 11515.50 11934.15 12252.42 

11 10494.81 11081.06 11602.27 11422.50 11817.02 12431.27 

12 12828.78 13418.26 13693.45 13446.39 13675.86 13988.73 

13 10707.86 10954.20 11248.91 11248.91 11698.40 12069.97 

14 11434.81 11738.69 12096.13 11606.66 12330.25 12717.31 

15 8822.69 9093.69 9510.09 8853.16 9783.35 10259.66 

16 10169.14 10741.17 11137.27 10169.14 10922.02 11434.18 

17 10201.22 10582.94 10845.80 10722.89 11183.42 11585.54 

18 11671.88 11900.61 12256.48 11939.53 12397.75 12641.80 

19 11300.43 11751.16 12276.04 12008.24 12324.43 12774.55 

20 12693.45 13129.37 13753.32 13416.36 13641.44 13802.03 
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Table 11. Comparison of the HPSO and RKGA for instances with 200 jobs. 

 

 

 

 

 

 

 

 

 

 

 

Table 12. Comparison of the HPSO and RKGA for instances with 300 jobs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. HPSO RKGA 
Min Avg Max Min Avg Max 

1 18920.89 20090.86 21360.42 20703.62 21723.10 22339.36 
2 19139.83 19767.12 20236.33 19949.53 21643.63 23000.44 

3 19838.23 20407.85 21055.58 20547.19 22143.17 23202.73 

4 16447.26 16964.18 17516.76 16679.12 19390.13 20349.63 

5 16739.94 17712.80 19582.64 16739.94 19234.44 20453.77 

6 19256.39 19541.13 19876.04 19781.07 21722.41 22778.22 

7 20692.87 21138.40 21771.03 20885.63 22789.93 23879.88 

8 19315.65 19718.71 20128.87 19924.69 21556.08 22716.95 

9 20026.54 20759.85 21692.04 20734.69 22817.16 24382.69 

10 22749.72 23227.89 23642.64 22878.15 24563.70 25480.14 

11 23811.95 24565.32 25019.23 24809.12 25783.71 26688.98 

12 18970.42 20261.12 21312.36 21312.36 22441.69 23366.37 

13 20080.43 20638.66 21244.68 21244.68 22172.76 22766.17 

14 22277.65 22686.96 23088.69 23088.69 23949.12 24568.77 

15 23788.03 24882.74 25925.38 25500.51 26562.59 27349.82 

16 23206.12 23540.56 24170.26 23284.12 24356.40 25129.52 

17 19722.80 20061.42 20320.37 20320.37 22208.25 23294.25 

18 20343.63 20913.75 21393.55 20343.63 23137.75 24854.58 

19 26086.69 26493.25 26896.66 26896.66 27534.76 28035.63 

20 20101.25 20386.03 20972.39 20972.39 22108.83 22777.78 

No. HPSO RKGA 
Min Avg Max Min Avg Max 

1 52166.03 55345.16 56781.85 56781.85 63975.88 66816.19 
2 58178.52 59342.76 61483.40 58178.52 67904.17 71216.01 

3 50222.12 52335.68 53878.71 53878.71 61245.71 63846.89 

4 62111.60 63737.06 65611.04 65611.04 70100.40 72985.79 

5 57679.87 58728.26 60290.04 57737.64 67292.35 70640.80 

6 43089.56 45365.82 46749.71 46440.90 54167.64 57440.92 

7 50085.65 51953.34 54472.25 54472.25 61140.46 65073.83 

8 48908.39 50253.83 51180.12 51180.12 59369.62 62527.10 

9 53926.41 56282.73 58788.09 58788.09 63970.56 66522.72 

10 52592.79 54426.40 55434.99 52592.79 62289.00 66445.34 

11 43392.42 44306.25 45731.31 43934.71 53085.40 56790.02 

12 52812.47 54914.64 57420.94 57420.94 63952.04 66981.85 

13 49773.51 51241.99 53876.50 50689.02 59589.32 63010.27 

14 48315.93 49874.72 50905.12 50306.53 57951.63 61221.28 

15 47996.14 48854.70 49743.01 48894.29 58142.07 61248.63 

16 51834.83 53334.89 56465.71 53167.75 60235.36 63175.93 

17 51470.87 53559.38 55622.32 54084.39 60991.78 64623.05 

18 45576.03 46465.61 47246.28 46970.86 55055.70 58044.17 

19 51218.54 52506.08 54097.55 52703.29 61795.82 64617.86 

20 51946.97 53719.35 56053.00 51946.97 61827.26 65291.55 
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