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Abstract 

   

1 | Introduction  

Optimization applications abound in many areas of science and engineering [1], [2]. In real practice, 

some parameters involved in optimization problems are subject to uncertainty for various reasons, 

including estimation errors and unexpected disturbance [3]. Such uncertain parameters can be 

product demands in process planning [4], kinetic constants in reaction separation-recycling system 

design [5] and task durations in batch process scheduling [6], among others. The issue of uncertainty 

could, unfortunately, render the solution of a deterministic optimization problem (i.e., the one 

disregarding uncertainty) suboptimal or even infeasible [7]. The infeasibility, i.e., the violation of 

constraints in optimization problems, has a disastrous consequence on the solution quality. Motivated 

by practical concern, optimization under uncertainty has attracted tremendous attention from 

academia and industry [3], [8]. 

The Smoothing problem (not to be confused with smoothing in statistics, image processing and other 

contexts) refers to Recursive Bayesian estimation, also known as Bayes filter, which is the problem 

of estimating an unknown probability density function recursively over time using incremental 

incoming measurements. It is one of the main problems defined by Norbert Wiener (Note: Do not 

be confused with blurring and smoothing using methods such as moving average). The stochastic 

filtering problem has caught the attention of thousands of mathematicians, engineers, statisticians, 

and computer scientists. Its applications span the whole spectrum of human endeavour, including 

satellite tracking, credit risk estimation, human genome analysis, and speech recognition. Stochastic 
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filtering has engendered a surprising number of mathematical techniques for its treatment and has played 

an essential role in developing new research areas, including stochastic partial differential equations, 

stochastic geometry, rough paths theory, and Maldivian calculus. It also spearheaded research in classical 

mathematics, such as Lie algebras, control theory, and information theory. This paper aims to give a 

brief historical account of the subject, concentrating on the continuous-time framework. Enormous 

authors studied smoothing problem (for instance, Cosme et al. [9], Einicke [10], Niu et al. [11] and 

Browarka et al. [12]).  

One of the difficulties that occur in the application of mathematical programming is that the parameters 

in the formulation are not constants but uncertain. Fuzzy set theory was first introduced by Zadeh [13]. 

Fuzzy numerical data can be represented by employing fuzzy subsets of the real line known as fuzzy 

numbers. Dubois and Prade [14] have extended the use of the algebraic operations on real numbers to 

fuzzy numbers using a fuzzification principle. The fuzzy nature of a goal programming problem was 

discussed by Zimmermann [15]. 

Badawi et al. [16] developed a smoothing theory for finite-dimensional linear stochastic systems in the 

context of stochastic realization theory. The basic idea is to embed the given stochastic system in a class 

of similar systems with the same output process and Kalman-Bucy filter. Klibanoff et al. [17] proposed 

and characterized a smooth model of decision-makers under ambiguity. Valenzuela and Pasadas [18] 

developed a new methodology for defining error and similarity measure indexes to establish an adequate 

criterion for comparison function approximation using fuzzy data. Wan and Hu [19] introduced a 

method to optimize the fused track quality in the intelligence network of radar target fusion systems. 

Ning and You [20] proposed a novel, data-driven, robust optimization framework that leverages the 

power of machine learning and big data analytics for uncertainty-free decision-making.  

Nowadays, a wide array of emerging machine-learning tools can be leveraged to analyze data and extract 

accurate, relevant, and helpful information to facilitate knowledge discovery and decision-making. Deep 

learning, one of the most rapidly growing machine learning subfields, demonstrates remarkable power 

in deciphering multiple layers of representations from raw data without any domain expertise in 

designing feature extractors [21]. More recently, the dramatic progress of mathematical programming 

[22], coupled with recent advances in machine learning [23], especially in deep learning over the past 

decade [24] sparked a flurry of interest in data-driven optimization [25]–[27].  

The rest of the paper is outlined as follows. 

 

Fig. 1. Layout of remaining paper. 

 

Section 2

Introduces some preliminaries 
related to PQFNs, close interval 

approximation and some 
properties of the geometrical law of 

probability (Pascal law).

Section 3

Introduces smoothing problem 
with non-fuzzy data

Section 4

Introduces a numerical example 
Introduces smoothing problem 

with PQFNsclose interval 
approxiation data. 

Section 5

presents numerical examples

Section 6

gives conclusion with future works
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2 | Preliminaries 

To discuss the problem easily, it recalls basic rules and findings related to fuzzy numbers, Piecewise 

Quadratic Fuzzy Numbers (PQFNs), close interval approximation, and its arithmetic operations. 

Definition 1 ([13]). A fuzzy number  is a fuzzy set with a membership function defined as

, and satisfies: 

I.  is fuzzy convex, i.e.,   

II.   is normal, i.e.,  for which   

III.  is the support of   

IV.  is an upper semi-continuous (i.e., for each , the  cut set  is 

closed. 

Definition 2 ([28]). A PQFN is denoted by , where  are 

real numbers and is defined by if its membership function  is given by (see Fig. 1) 

                                 

 

Fig. 2. Graphical representation of a PQFN. 

The interval of confidence at level  for the PQFN is defined as 

Definition 3 ([28]). Let   and  be two PQFNs. The 

arithmetic operations on  and  are: 
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I. Addition: . 

II. Subtraction: . 

III. Scalar multiplication:  

Definition 4 ([28]). An interval approximation  of a PQFN  is called closed interval 

approximation if  

Definition 5 ([28]). Associated ordinary numbers. If  is the close interval 

approximation of PQFN, the Associated ordinary number of   is defined as , or 

 

Definition 6 ([28]). Let , and   be two interval approximations of PQFN, 

then the algebraic operations are: 

I. Addition: . 

II. Subtraction:  

III. Scalar multiplication:  

IV. Multiplication: =  

V. Division:   

Definition 7. The probability function defines the geometrical law of probability (Pascal law). 

with Mean  and Variance  are given by 

 

where  is the random variable having values . 

Definition 8. A less classical law (or geometrical modified law) truncated to the left of  and is 

defined by 

 

 

3 | Smoothing with Non-Fuzzy Data           

Based on the Probability Law (4), the exponential smoothing method is established, which deals with the 

effect of the numerical value on a chronological (time) sequence and with some coefficients 

corresponding to the probability law. The estimate of  at the time 𝑡 is given by the following 

convolution summation as 

 (1) 

(2) 

(3) 

(4) 
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By using the Eq. (5),  can be computed, and a recursive formula is given as 

Which can be used for the computation of the estimates. The convolution summation process of Eq. (5) 

is, in a way, a ''discounting'' of the past data, which geometrically decreases the values of the chronological 

sequence from  to 0 with the accumulation of the remaining weights starting at  

The estimation of  is determined from  and  as given by Eq. (6). Often, we are interested 

in the extrapolation  at the time  which can be obtained from  using a special hypothesis.  

There are several examples of various orders of smoothing: 

I. Single smoothing of order 1: Using Eq. (5), this is given by 

II. Over-smoothing of order 2 

where , is given in Eq. (7). 

This over-smoothing can also be expressed in terms of  as 

Eq. (9) can be used to induce over-smoothing of orders  

4 | Smoothing with Piecewise Quadratic Fuzzy Data 

Consider the smoothing problem with piecewise quadratic fuzzy data. Assume that the number  in the 

data is replaced by the corresponding close intervals approximation as 

It is clear that a complex weighting process used in exponential smoothing preserves the monotonicity for 

the close intervals approximation. Therefore, the smoothed fuzzy sequence can be written using Eqs. (8) 

and (9) as 

Or in the recursive form, Eq. (11) becomes 

     

                                

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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5 | Numerical Examples 

Example 1. Let , and using the Eq. (6),  and  can be calculated for  as 

Table 1. Calculations of  and  with non-fuzzy data. 

 

 

 

 

Example 2. Assume again  and let the input sequence of PQF be given by  

 

 

By using the Recursive Expression (8), the lower and upper bounds of the smoothed (filtered) data can be 

computed as 

 Table 2. Computations of the lower bound  

corresponding to  

 

 

 

Table 3. Computations of the upper bound  

corresponding to  

 

 

 

 Thus, the fuzzy smoothed estimates as 

  

Example 3. Let the fuzzy time series given by PQFs as 

 

Let us define: 

Input PQF time series:  
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Output (smoothed) PQF time series: . 

Assuming that  and using the recursive Eq. (8), we obtain  

 Table 4. Computations of  corresponding to  

 

  

 

 

 Table 5. Computations of  corresponding to  

 

 

 

 Table 6. Computations of  corresponding to . 

  

 

 

 

Table 7. Computations of the upper bound  

corresponding to . 

 

Table 8. Computations of the upper bound  

corresponding to  
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Fig. 3. Input fuzzy time series  (Example 3). 

 

Fig. 4. First-ordered smoothed time series  (Example 3). 

  

Fig. 5. Second ordered smoothed time series  (Example 3). 

6 | Conclusions and Future Works  

This paper clearly shows that using PQFNs gives a more unambiguous indication of the effect of fuzzy 

smoothing (filtering). We have not addressed some critical questions which may arise when the 

smoothing is applied to a fuzzy time series. These include, for instance, the choice of the smoothing 

parameter , the forecasting of several periods after smoothing, and the adaptive filtering, etc. We aimed 

to explain that in smoothing and extrapolation problems, fuzzy numbers are just a generalization of 

ordinary numbers.  

Most of the concepts of filtering and estimation, which are well-known in statistical theory, can be 

extended to fuzzy filtering and estimation with fuzzy time sequences. Future work will be focused on 

fuzzy optimal estimation, adaptive estimation, and filtering. Future work may include extending this 
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study to other fuzzy-like structures (i.e., interval-valued fuzzy set, Neutrosophic set, Pythagorean fuzzy set, 

Spherical fuzzy set, etc., with more discussion and suggestive comments 
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