Document Type : Original Article


1 Department of Information Technology Engineering, Science and Research Branch, Islamic Azad University, Kerman, Iran.

2 Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.


The new generation of wireless networks (LTE advance and WIMAX) supports many services that consume many resources (such as VOIP, video conference …). Adding multi-media services to wireless communication systems provide new challenges of resource allocation. This paper proposes a resource scheduling downlink algorithm for LTE networks. In the proposed algorithm for different types of services, priorities are defined to guarantee transitions of GBR services that need high QoS. This method also considers channel quality and buffer status to achieve higher throughput for non-GBR services. The proposed algorithm is simulated and compared with the proportional fair algorithm. Simulation results show that the suggested algorithm can increase system throughput and QoS of real-time services at the cost of a certain amount of throughput and QoS of non-real times.


[1]   Dahlman, E., Parkvall, S., Sköld, J., & Beming, P. (2007). 3G evolution: HSPA and LTE for mobile broadband. Academic Press.
[2]   Khan, F. (2009). LTE for 4G mobile broadband: air interface technologies and performance (Vol. 9780521882). Cambridge University Press.
[3]   Holma, H., & Toskala, A. (2009). LTE for UMTS - OFDMA and SC-FDMA based radio access. John Wiley & Sons.
[4]   Sesia, S., Toufik, I., & Baker, M. (2009). LTE-the UMTS long term evolution. Wiley Online Library.
[5]   Trivedi, R. D., & Patel, M. C. (2014). Comparison of different scheduling algorithm for LTE. International journal of emerging technology and advanced engineering, 4(5), 334–339.
[6]   Iosif, O., & Bănică, I. (2013). Performance analysis of Downlink LTE using system level simulator. UPB sci. bull., series C, 75(1), 111–122.
[7]   Beh, K. C., Armour, S., & Doufexi, A. (2008). Joint time-frequency domain proportional fair scheduler with harq for 3gpp lte systems. 2008 IEEE 68th vehicular technology conference (pp. 1–5). IEEE.
[8]   Badia, L., Baiocchi, A., Todini, A., Merlin, S., Pupolin, S., Zanella, A., & Zorzi, M. (2007). On the impact of physical layer awareness on scheduling and resource allocation in broadband multicellular IEEE 802.16 systems. IEEE wireless communications, 14(1), 36–43. DOI:10.1109/MWC.2007.314549
[9]   Chadchan, S. M., & Akki, C. B. (2013). A fair downlink scheduling algorithm for 3GPP LTE networks. International journal of computer network and information security, 5(6), 34–41.
[10] Elhadad, M. I., & Abd-elnaby, M. (2014). Enhanced PF scheduling algorithm for LTE downlink system. Mobile computing journal, 3(1), 7–12.
[11] Sharma, V., & Chopra, P. P. K. (2014). A packet based scheduling mechanism in real time traffic for LTE downlink networks. International journal of engineering research & technology, 3(9), 165–169.
[12] Müller, M. K., Schwarz, S., & Rupp, M. (2013). QoS investigation of proportional fair scheduling in lte networks. 2013 IFIP wireless days (WD) (pp. 1–4). IEEE.
[13] Wang, Y. H., & Huang, H. Y. (2014). A qos-based fairness-aware downlink scheduling in lte-advanced. 2014 17th international conference on network-based information systems (pp. 470–475). IEEE.
[14] Ma, P., Lu, Y., Hou, Y., Li, L., Zhao, X., Zhang, L., & Zhu, H. (2018). A multi-service qos guaranteed scheduling algorithm for TD-LTE 230 MHz power wireless private networks. 2018 12th international symposium on antennas, propagation and em theory (ISAPE) (pp. 1–4). IEEE.
[15] Asadollahi, F., & Dehdasht-Heydari, R. (2018). Introduction of a novel hybrid weighted exponential logarithm-maximum throughput (HWEL-MT) scheduler for QoS improvement of LTE/4G cellular networks. Wireless personal communications, 98(1), 91–104. DOI:10.1007/s11277-017-4857-0
[16] Costa Neto, F. H., Bezerra Rodrigues, E., Aguiar Sousa, D., Ferreira Maciel, T., & Porto Cavalcanti, F. R. (2017). QoS-aware scheduling algorithms to enhance user satisfaction in OFDMA systems. Transactions on emerging telecommunications technologies, 28(10), e3165. DOI:10.1002/ett.3165
[17] Chaudhuri, S., Baig, I., & Das, D. (2018). A novel QoS aware medium access control scheduler for LTE-advanced network. Computer networks, 135, 1–14. DOI:10.1016/j.comnet.2018.01.024
[18] Uyan, O. G., & Gungor, V. C. (2019). QoS-aware LTE-a downlink scheduling algorithm: a case study on edge users. International journal of communication systems, 32(15), e4066. DOI:10.1002/dac.4066
[19] Madi, N. K. M., Hanapi, Z. M., Othman, M., & Subramaniam, S. K. (2018). Delay-based and QoS-aware packet scheduling for RT and NRT multimedia services in LTE downlink systems. Eurasip journal on wireless communications and networking, 2018(1), 1–21. DOI:10.1186/s13638-018-1185-3
[20] Rocha, F. G. C., & Vieira, F. H. T. (2019). A channel and queue-aware scheduling for the LTE downlink based on service curve and buffer overflow probability. IEEE wireless communications letters, 8(3), 729–732. DOI:10.1109/LWC.2018.2889725
[21] Elhadad, M. I., El-Shafai, W., El-Rabaie, E. S. M., Abd-Elnaby, M., & Abd El-Samie, F. E. (2020). Enhanced fair earliest due date first scheduling strategy for multimedia applications in LTE downlink framework. International journal of communication systems, 33(6), e4190. DOI:10.1002/dac.4190
[22] Nasralla, M. M. (2020). A hybrid downlink scheduling approach for multi-traffic classes in LTE wireless systems. IEEE access, 8, 82173–82186. DOI:10.1109/ACCESS.2020.2990381
[23] Ashfaq, K., Safdar, G. A., & Ur-Rehman, M. (2021). Comparative analysis of scheduling algorithms for radio resource allocation in future communication networks. PeerJ computer science, 7, 1–13. DOI:10.7717/PEERJ-CS.546
[24] Mushtaq, M. S., Shahid, A., & Fowler, S. (2012). QoS-aware lte downlink scheduler for voip with power saving. 2012 IEEE 15th international conference on computational science and engineering (pp. 243–250). IEEE.
[25] Stolyar, A. L., & Ramanan, K. (2001). Largest weighted delay first scheduling: large deviations and optimality. Annals of applied probability, 11(1), 1–48. DOI:10.1214/aoap/998926986
[26] Dong, S. (2006). Methods for constrained optimization. Massachusetts institute of technology, massachusetts.
[27] Huang, S. F., Wu, E. H. K., & Chang, P. C. (2006). Optimal adaptive voice smoother with lagrangian multiplier method for VoIP service [presentation]. Proceedings of the 6th WSEAS international conference on multimedia systems & signal processing (pp. 186–191).
[28] Zöchmann, E., Schwarz, S., Pratschner, S., Nagel, L., Lerch, M., & Rupp, M. (2016). Exploring the physical layer frontiers of cellular uplink: the vienna LTE-a uplink simulator. Eurasip journal on wireless communications and networking, 2016(1), 1–18. DOI:10.1186/s13638-016-0609-1
[29] Jain, R. (1990). The art of computer systems performance analysis techniques for experimental design, measurement, simulation and modeling (Vol. 1). New York: Wiley.