Document Type : Original Article


1 Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 College of Management and Accounting, Allame Tabatabaei University, 1489684511 Tehran, Iran.


Supply Chain Management (SCM) is an integrated system of planning and control of materials and information, including suppliers, manufacturers, distributors, retailers, and customers. Chain performance measurement is an important issue in SCM. Also, given that the information plays a key role in improving supply chain performance, the kind and amount of information sharing should be investigated. In this paper, the effect of information sharing on supply chain performance will be evaluated. In this way, 17 different scenarios of information sharing are defined and ranked using the cross-efficiency method. Finally, values ​​for different scenarios using simulations and Rockwell Software Arena V5 are reported. The obtained results show that the proposed model is quite valid and efficient and can be easily applied to real-world cases.


[1]     Simchi-Levi, D., Kaminsky, P., & Simchi-Levi, E. (2004). Managing the supply chain: the definitive guide for the business professional (No. 272468). Mcgraw-hill.
[2]     Moberg, C. R., Cutler, B. D., Gross, A., & Speh, T. W. (2002). Identifying antecedents of information exchange within supply chains. International journal of physical distribution and logistics management, 32(9), 755–770. DOI:10.1108/09600030210452431
[3]     Childerhouse, P., & Towill, D. R. (2003). Simplified material flow holds the key to supply chain integration. Omega, 31(1), 17–27. DOI:10.1016/S0305-0483(02)00062-2
[4]     Towill, D. R. (1997). The seamless supply chain-the predator’s strategic advantage. International journal of technology management, 13(1), 37–56. DOI:10.1504/IJTM.1997.001649
[5]     Cachon, G. P., & Fisher, M. (2000). Supply chain inventory management and the value of shared information. Management science, 46(8), 1032–1048. DOI:10.1287/mnsc.46.8.1032.12029
[6]     Jarrell, J. L. (1998). Supply chain economics: supply chain management and competitive advantage. World trade, 11, 58–61.
[7]     Zhao, X., Xie, J., & Zhang, W. J. (2002). The impact of information sharing and ordering co-ordination on supply chain performance. Supply chain management: an international journal, 7(1), 24–40.
[8]     Lin, F., Huang, S., & Lin, S. (2002). Effects of information sharing on supply chain performance in electronic commerce. IEEE transactions on engineering management, 49(3), 258–268.
[9]     Chizzo, S. A. (1998). Supply chain strategies: solutions for the customer-driven enterprise. Software magazine, 1(4), 9-16.
[10]   Holmberg, S. (2000). A systems perspective on supply chain measurements. International journal of physical distribution & logistics management, 30(10), 847–868. DOI:10.1108/09600030010351246
[11]   Strader, T. J., Lin, F. R., & Shaw, M. J. (2002). The impact of information sharing on order fulfillment in divergent differentiation supply chains. In Global perspective of information technology management (pp. 276–296). IGI Global.
[12]   Bourland, K. E., Powell, S. G., & Pyke, D. F. (1996). Exploiting timely demand information to reduce inventories. European journal of operational research, 92(2), 239–253. DOI:10.1016/0377-2217(95)00136-0
[13]   Ernst, R., & Kamrad, B. (1997). Allocation of warehouse inventory with electronic data interchange and fixed order intervals. European journal of operational research, 103(1), 117–128. DOI:10.1016/S0377-2217(96)00280-9
[14]   Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level supply chain. Management science, 46(5), 626–643.
[15]   Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Management science, 46(3), 436–443. DOI:10.1287/mnsc.46.3.436.12069
[16]   Tan, G. W. (1999). The impact of demand information sharing on supply chain network. University of Illinois at Urbana-Champaign.
[17]   Thonemann, U. W. (2002). Improving supply-chain performance by sharing advance demand information. European journal of operational research, 142(1), 81–107. DOI:10.1016/S0377-2217(01)00281-8
[18]   Zhang, C., & Zhang, C. (2007). Design and simulation of demand information sharing in a supply chain. Simulation modelling practice and theory, 15(1), 32–46. DOI:10.1016/j.simpat.2006.09.011
[19]   Ryu, S. J., Tsukishima, T., & Onari, H. (2009). A study on evaluation of demand information-sharing methods in supply chain. International journal of production economics, 120(1), 162–175. DOI:10.1016/j.ijpe.2008.07.030
[20]   Helper, C. M., Davis, L. B., & Wei, W. (2010). Impact of demand correlation and information sharing in a capacity constrained supply chain with multiple-retailers. Computers and industrial engineering, 59(4), 552–560. DOI:10.1016/j.cie.2010.06.014
[21]   Cho, D. W., & Lee, Y. H. (2013). The value of information sharing in a supply chain with a seasonal demand process. Computers and industrial engineering, 65(1), 97–108. DOI:10.1016/j.cie.2011.12.004
[22]   Lee, H. L., & Whang, S. (2000). Information sharing in a supply chain. International journal of manufacturing technology and management, 1(1), 79–93. DOI:10.1504/IJMTM.2000.001329
[23]   Fiala, P. (2005). Information sharing in supply chains. Omega, 33(5), 419–423.
[24]   Zhou, H., & Benton, W. C. (2007). Supply chain practice and information sharing. Journal of operations management, 25(6), 1348–1365. DOI:10.1016/j.jom.2007.01.009
[25]   Wu, Y. N., & Cheng, T. C. E. (2008). The impact of information sharing in a multiple-echelon supply chain. International journal of production economics, 115(1), 1–11.
[26]   Yu, M. M., Ting, S. C., & Chen, M. C. (2010). Evaluating the cross-efficiency of information sharing in supply chains. Expert systems with applications, 37(4), 2891–2897. DOI:10.1016/j.eswa.2009.09.048
[27]   Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444.
[28]   Boussofiane, A., Dyson, R. G., & Thanassoulis, E. (1991). Applied data envelopment analysis. European journal of operational research, 52(1), 1–15. DOI:10.1016/0377-2217(91)90331-O
[29]   Charnes, A., Cooper, W., Lewin, A. Y., & Seiford, L. M. (1994). Data envelopment analysis theory, methodology and applications. Springer.
[30]   Seiford, L. M., & Thrall, R. M. (1990). Recent developments in DEA: the mathematical programming approach to frontier analysis. Journal of econometrics, 46(1–2), 7–38. DOI:10.1016/0304-4076(90)90045-U
[31]   Cooper, W. W., Huang, Z., & Li, S. X. (1996). Satisficing DEA models under chance constraints. Annals of operations research, 66, 279–295. DOI:10.1007/BF02187302
[32]   Cooper, W. W., Thompson, R. G., & Thrall, R. M. (1996). Introduction: Extensions and new developments in DEA. Annals of operations research, 66, 3–45.
[33]   Cook, W. D., & Kress, M. (1990). A data envelopment model for aggregating preference rankings. Management science, 36(11), 1302–1310.
[34]   Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. New directions for program evaluation, 1986(32), 73–105. DOI:10.1002/ev.1441
[35]   Doyle, J., & Green, R. (1994). Efficiency and cross-efficiency in DEA derivations, meanings and uses. Journal of the operational research society, 45(5), 567–578. DOI:10.1057/jors.1994.84