[1] Podlubny, I. (1999). Fractional differential equations, mathematics in science and engineering. In Mathematics in science and engineering (pp. 1–340). Academic press New York.
[2] Avazzadeh, Z., Hassani, H., Agarwal, P., Mehrabi, S., Ebadi, M. J., & Hosseini Asl, M. K. (2023). Optimal study on fractional fascioliasis disease model based on generalized Fibonacci polynomials. Mathematical methods in the applied sciences, 46(8), 9332–9350. DOI:10.1002/mma.9057
[3] Avazzadeh, Z., Hassani, H., Ebadi, M. J., Agarwal, P., Poursadeghfard, M., & Naraghirad, E. (2023). Optimal approximation of fractional order brain tumor model using generalized laguerre polynomials. Iranian journal of science, 47(2), 501–513. DOI:10.1007/s40995-022-01388-1
[4] Jafari, H., Malinowski, M. T., & Ebadi, M. J. (2021). Fuzzy stochastic differential equations driven by fractional Brownian motion. Advances in difference equations, 2021(1), 1–17.
[5] Radmanesh, M., & Ebadi, M. J. (2020). A local mesh-less collocation method for solving a class of time-dependent fractional integral equations: 2D fractional evolution equation. Engineering analysis with boundary elements, 113, 372–381. DOI:10.1016/j.enganabound.2020.01.017
[6] Abdollahi, Z., Mohseni Moghadam, M., Saeedi, H., & Ebadi, M. J. (2022). A computational approach for solving fractional Volterra integral equations based on two-dimensional Haar wavelet method. International journal of computer mathematics, 99(7), 1488–1504.
[7] Avazzadeh, Z., Hassani, H., Agarwal, P., Mehrabi, S., Ebadi, M. J., & Dahaghin, M. S. (2023). An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials. Soft computing, 27(14), 9519–9531. DOI:10.1007/s00500-023-08086-z
[8] Jafari, H., & Farahani, H. (2023). An approximate approach to fuzzy stochastic differential equations under sub-fractional Brownian motion. Stochastics and dynamics, 2350017. https://doi.org/10.1142/S021949372350017X
[9] Radmanesh, M., & Ebadi, M. J. (2022). A local meshless rbf method for solving fractional integral equations. Sixth international conference on analysis and applied mathematics (p. 154). ICAAM.
[10] Jafari, H., & Ebadi, M. J. (2022). Expected value of supremum of some fractional gaussian processes [presentation]. Sixth international conference on analysis and applied mathematics (Vol. 156). http://icaam-online.org/Abstractbook.pdf#page=156
[11] Farahani, H., Ebadi, M. J., & Jafari, H. (2019). Finding inverse of a fuzzy matrix using eigen value method. International journal of innovative technology and exploring engineering, 9(2), 3030–3037. DOI:10.35940/ijitee.b6295.129219
[12] Avazzadeh, Z., Hassani, H., Eshkaftaki, A. B., Ebadi, M. J., Asl, M. K. H., Agarwal, P., … Dahaghin, M. S. (2023). An Efficient algorithm for solving the fractional hepatitis b treatment model using generalized bessel polynomial. Iranian journal of science, 47(5–6), 1649–1664. DOI:10.1007/s40995-023-01521-8
[13] Hassani, H., Avazzadeh, Z., Agarwal, P., Mehrabi, S., Ebadi, M. J., Dahaghin, M. S., & Naraghirad, E. (2023). A study on fractional tumor-immune interaction model related to lung cancer via generalized Laguerre polynomials. BMC medical research methodology, 23(1), 189. DOI:10.1186/s12874-023-02006-3
[14] Diethelm, K. (2010). The analysis of fractional differential equations. Springer.
[15] Cui, M. (2021). Finite difference schemes for the two-dimensional multi-term time-fractional diffusion equations with variable coefficients. Computational and applied mathematics, 40(5), 167. DOI:10.1007/s40314-021-01551-1
[16] Shen, J., Tang, T., & Wang, L. L. (2011). Spectral methods: algorithms, analysis and applications (Vol. 41). Springer.
[17] Liu, G. R., & Karamanlidis, D. (2003). Mesh free methods: moving beyond the finite element method. Applied mechanics reviews, 56(2), B17--B18.
[18] Buhmann, M. D. (2000). Radial basis functions. Acta numerica, 9, 1–38. DOI:10.1017/S0962492900000015
[19] Kansa, E. J. (1990). Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Computers and mathematics with applications, 19(8–9), 127–145. DOI:10.1016/0898-1221(90)90270-T
[20] Dehghan, M., & Mirzaei, D. (2008). The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrödinger equation. Engineering analysis with boundary elements, 32(9), 747–756. DOI:10.1016/j.enganabound.2007.11.005
[21] Wang, Y., Huang, J., & Li, H. (2023). A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations. Numerical algorithms, 1–23. DOI:10.1007/s11075-023-01630-w
[22] Wendland, H. (2004). Scattered data approximation (Vol. 17). Cambridge University Press.
[23] Oñate, E., Idelsohn, S., Zienkiewicz, O. C., & Taylor, R. L. (1996). A finite point method in computational mechanics: Applications to convective transport and fluid flow. International journal for numerical methods in engineering, 39(22), 3839–3866.
[24] Assari, P., & Dehghan, M. (2017). A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Applied mathematics and computation, 315, 424–444. DOI:10.1016/j.amc.2017.07.073
[25] Sun, L., Chen, W., & Zhang, C. (2013). A new formulation of regularized meshless method applied to interior and exterior anisotropic potential problems. Applied mathematical modelling, 37(12–13), 7452–7464.
[26] Yao, G., Tsai, C. H., & Chen, W. (2010). The comparison of three meshless methods using radial basis functions for solving fourth-order partial differential equations. Engineering analysis with boundary elements, 34(7), 625–631. DOI:10.1016/j.enganabound.2010.03.004
[27] Shirzadi, A., Ling, L., & Abbasbandy, S. (2012). Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Engineering analysis with boundary elements, 36(11), 1522–1527. DOI:10.1016/j.enganabound.2012.05.005
[28] Shirzadi, A., & Ling, L. (2013). Convergent overdetermined-RBF-MLPG for solving second order elliptic pdes. Advances in applied mathematics and mechanics, 5(1), 78–89. DOI:10.4208/aamm.11-m11168
[29] Abbasbandy, S., & Shirzadi, A. (2011). MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions. Applied numerical mathematics, 61(2), 170–180. DOI:10.1016/j.apnum.2010.09.002
[30] Shirzadi, A. (2014). Solving 2D reaction-diffusion equations with nonlocal boundary conditions by the RBF-MLPG method. Computational mathematics and modeling, 25(4), 521–529. DOI:10.1007/s10598-014-9246-x
[31] Dehghan, M., & Mirzaei, D. (2009). Meshless local petrov-galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Applied numerical mathematics, 59(5), 1043–1058. DOI:10.1016/j.apnum.2008.05.001
[32] Shirzadi, A., & Takhtabnoos, F. (2016). A local meshless method for Cauchy problem of elliptic PDEs in annulus domains. Inverse problems in science and engineering, 24(5), 729–743. DOI:10.1080/17415977.2015.1061521
[33] Lee, C. K., Liu, X., & Fan, S. C. (2003). Local multiquadric approximation for solving boundary value problems. Computational mechanics, 30(5–6), 396–409. DOI:10.1007/s00466-003-0416-5
[34] Li, M., Chen, W., & Chen, C. S. (2013). The localized RBFs collocation methods for solving high dimensional PDEs. Engineering analysis with boundary elements, 37(10), 1300–1304. DOI:10.1016/j.enganabound.2013.06.001
[35] Shirzadi, A., & Takhtabnoos, F. (2015). A local meshless collocation method for solving Landau-Lifschitz-Gilbert equation. Engineering analysis with boundary elements, 61, 104–113. DOI:10.1016/j.enganabound.2015.07.010
[36] Takhtabnoos, F., & Shirzadi, A. (2016). A new implementation of the finite collocation method for time dependent PDEs. Engineering analysis with boundary elements, 63, 114–124. DOI:10.1016/j.enganabound.2015.11.007
[37] Najafalizadeh, S., & Ezzati, R. (2016). Numerical methods for solving two-dimensional nonlinear integral equations of fractional order by using two-dimensional block pulse operational matrix. Applied mathematics and computation, 280, 46–56. DOI:10.1016/j.amc.2015.12.042
[38] Abbas, S., & Benchohra, M. (2014). Fractional order integral equations of two independent variables. Applied mathematics and computation, 227, 755–761. DOI:10.1016/j.amc.2013.10.086
[39] Yao, G. (2011). Local radial basis function methods for solving partial differential equations. The University of Southern Mississippi.
[40] Pandey, R. K., Singh, O. P., & Singh, V. K. (2009). Efficient algorithms to solve singular integral equations of Abel type. Computers and mathematics with applications, 57(4), 664–676. DOI:10.1016/j.camwa.2008.10.085
[41] Lepik, Ü. (2009). Solving fractional integral equations by the Haar wavelet method. Applied mathematics and computation, 214(2), 468–478. DOI:10.1016/j.amc.2009.04.015