Document Type : Original Article


1 Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, Egypt.

2 Department of Mathematics, College of Science and Arts, Al-Badaya, Qassim University, Saudi Arabia.

3 Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran.

4 University of Defense in Belgrade, Serbia.


Smoothing (filtering) of data is a major problem in engineering and science. In this paper, the smoothing of data arising in modelling and decision-making problems is considered. Firstly, the conventional smoothing and filtering problem and its extension to a fuzzy situation are introduced.


[1]     Biegler, L. T., & Grossmann, I. E. (2004). Retrospective on optimization. Computers and chemical engineering, 28(8), 1169–1192. DOI:10.1016/j.compchemeng.2003.11.003
[2]     Sakizlis, V., Perkins, J. D., & Pistikopoulos, E. N. (2004). Recent advances in optimization-based simultaneous process and control design. Computers and chemical engineering, 28(10), 2069–2086. DOI:10.1016/j.compchemeng.2004.03.018
[3]     Sahinidis, N. V. (2004). Optimization under uncertainty: State-of-the-art and opportunities. Computers and chemical engineering, 28(6–7), 971–983. DOI:10.1016/j.compchemeng.2003.09.017
[4]     Liu, M. L., & Sahinidis, N. V. (1996). Optimization in process planning under uncertainty. Industrial and engineering chemistry research, 35(11), 4154–4165. DOI:10.1021/ie9504516
[5]     Acevedo, J., & Pistikopoulos, E. N. (1998). Stochastic optimization based algorithms for process synthesis under uncertainty. Computers and chemical engineering, 22(4–5), 647–671. DOI:10.1016/s0098-1354(97)00234-2
[6]     Li, Z., & Ierapetritou, M. (2008). Process scheduling under uncertainty: Review and challenges. Computers and chemical engineering, 32(4–5), 715–727. DOI:10.1016/j.compchemeng.2007.03.001
[7]     Ben-Tal, A., & Nemirovski, A. (2002). Robust optimization--methodology and applications. Mathematical programming, 92, 453–480.
[8]     Pistikopoulos, E. N. (1995). Uncertainty in process design and operations. Computers and chemical engineering, 19(SUPPL. 1), 553–563. DOI:10.1016/0098-1354(95)87094-6
[9]     Cosme, E., Verron, J., Brasseur, P., Blum, J., & Auroux, D. (2012). Smoothing problems in a Bayesian framework and their linear Gaussian solutions. Monthly weather review, 140(2), 683–695. DOI:10.1175/MWR-D-10-05025.1
[10]   Einicke, G. A. (2019). Smoothing, filtering and prediction: estimating the past, present and future second edition. Prime Publishing.
[11]   Niu, T., Zhang, L., Zhang, B., Yang, B., & Wei, S. (2020). An improved prediction model combining inverse exponential smoothing and Markov Chain. Mathematical problems in engineering, 2020, 1–11. DOI:10.1155/2020/6210616
[12]   Browarska, N., Kawala-Sterniuk, A., Zygarlicki, J., Podpora, M., Pelc, M., Martinek, R., & Gorzelańczyk, E. J. (2021). Comparison of smoothing filters’ influence on quality of data recorded with the emotiv epoc flex brain–computer interface headset during audio stimulation. Brain sciences, 11(1), 1–23. DOI:10.3390/brainsci11010098
[13]   Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.
[14]   Dubois, D. J., & Prade, H. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Academic Press.
[15]   Zimmermann, H. J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy sets and systems, 1(1), 45–55. DOI:10.1016/0165-0114(78)90031-3
[16]   Badawi, F. A., Lindquist, A., & Pavon, M. (1979). A stochastic realization approach to the smoothing problem. IEEE transactions on automatic control, 24(6), 878–888. DOI:10.1109/TAC.1979.1102174
[17]   Klibanoff, P., Marinacci, M., & Mukerji, S. (2005). A smooth model of decision making under ambiguity. Econometrica, 73(6), 1849–1892. DOI:10.1111/j.1468-0262.2005.00640.x
 [18] Valenzuela, O., & Pasadas, M. (2011). Fuzzy data approximation using smoothing cubic splines: Similarity and error analysis. Applied mathematical modelling, 35(5), 2122–2144. DOI:10.1016/j.apm.2010.11.046
[19]   Wan, Y., & Hu, C. (2015). Adaptive smoothing method based on fuzzy theory study and realization. Journal of computer and communications, 03(05), 38–43. DOI:10.4236/jcc.2015.35005
[20]   Ning, C., & You, F. (2018). Data-driven decision making under uncertainty integrating robust optimization with principal component analysis and kernel smoothing methods. Computers and chemical engineering, 112, 190–210. DOI:10.1016/j.compchemeng.2018.02.007
[21]   Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
[22]   Grossmann, I. E. (2012). Advances in mathematical programming models for enterprise-wide optimization. Computers and chemical engineering, 47, 2–18. DOI:10.1016/j.compchemeng.2012.06.038
[23]   Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.
[24]   LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
[25]   Calfa, B. A., Grossmann, I. E., Agarwal, A., Bury, S. J., & Wassick, J. M. (2015). Data-driven individual and joint chance-constrained optimization via kernel smoothing. Computers & Chemical Engineering78, 51-69.
[26]   Krieger, A., & Pistikopoulos, E. N. (2014). Model predictive control of anesthesia under uncertainty. Computers and chemical engineering, 71, 699–707. DOI:10.1016/j.compchemeng.2014.07.025
[27]   Gao, J., & You, F. (2017). Modeling framework and computational algorithm for hedging against uncertainty in sustainable supply chain design using functional-unit-based life cycle optimization. Computers and chemical engineering, 107, 221–236. DOI:10.1016/j.compchemeng.2017.05.021
[28]   Jain, S. (2010). Close interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program. Iranian journal of operations research, 2(1), 77–88.